AUTOMATED MEASURING SYSTEM FOR INVESTIGATING TEMPERATURE DEPENDENCE OF LOW-FREQUENCY NOISE SPECTRA IN ELECTRONIC ELEMENTS AND STRUCTURES
DOI:
https://doi.org/10.31489/2022No4/51-57Keywords:
atomic force microscopy, low-frequency noise spectroscopy, temperature measurements, automation of measurements, barrier structuresAbstract
In this paper a measuring analytical system for low-frequency noise spectroscopy is presented. The measuring system is adapted for the automated study of low-frequency noise spectra in electronic elements, components and semiconductor materials and structures. A distinctive feature of the proposed measuring system is an automated complex local and precise study of the dependence of the low-frequency noise spectra in the sample on electrical voltage and temperature. The frequency range is 0.001-10000 Hz, DC bias range is 0-50 V and the temperature range is 7-500 К. The measuring system is adapted for use with an atomic force microscope for local measurements of electronic materials and structures noise characteristics. The measuring system makes it possible to obtain a larger amount of experimental data, which makes it possible to draw comprehensive conclusions about the mechanisms and causes of noise generation in the test sample. The results of testing the operation of the measuring system are given as an example of the Schottky diode-like structure study.
References
"1 Zhigalsky G.P. Fluctuations and noise in electronic solid state devices. Moscow, 2012, 512 p. [in Russian]
Razumenko D.V. Low-frequency noise of electronic components as a tool for diagnosing internal defects. Components and technology, 2008, No. 9, pp. 168-174. [in Russian]
Buckingham M.J. Noise in electronic devices and systems. New York: Ellis Horwood Ltd. 1983, 399 p.
Kogan Sh.M. Low-frequency current noise with 1/f spectrum in solids. Soviet Physics Uspekhi, 1985, Vol. 28, pp. 170-196. doi: 10.1070/PU1985v028n02ABEH003853
Bonani F., Ghione G. Noise in Semiconductor Devices. Springer-Verlag Berlin Heidelberg, 2001, Vol. 7, pp. 1-38. doi: 10.1007/978-3-662-04530-5_1
Schottky W. Über spontane stromschwankungen in verschiedenen elektrizitatsleitern. Ann. der Phys., 1918, Vol.57, pp. 541-567. doi: 10.1002/andp.19183622304
Sikula J., Levinshtein M. Advanced Experimental Methods for Noise Research in Nanoscale Electronic Devices. Nato Science Series II: Springer Netherlands, 2004, 368 p. doi: 10.1007/1-4020-2170-4
Kostryukov S.A., Ermachikhin A.V., Litvinov V.G., Kholomina T.A., Rybin N.B. A measuring System for the Spectroscopy of the Low-Frequency Noise of Semiconductor Diode Structures. Measurement Techniques, 2013, Vol.56, Iss. 9, pp. 1066-1071. doi: 10.1007/s11018-013-0331-x
Liu G., Rumyantsev S., Bloodgood M.A., et al. Low-Frequency Electronic Noise in Quasi-1D TaSe3 van der Waals Nanowires. Nano Letters, 2017, Vol. 17, 1, pp. 377-383. doi: 10.1021/acs.nanolett.6b04334
Empante T.A., Martinez A., Wurch M., et al. Low Resistivity and High Breakdown Current Density of 10-nm Diameter van der Waals TaSe3Nanowiresby Chemical Vapor Deposition. Nano Letters, 2019, Vol. 19, no. 7, pp. 4355-4361. doi: 10.1021/acs.nanolett.9b00958
Geremew A., Qian C., Abelson A., Rumyantsev S., Kargar F., Lawbce M., Balandin A.A. Low-frequency electronic noise in superlattice and random-packed thin films of colloidal quantum dots. Nanoscale, 2019, Vol. 11, No.42, pp. 20171-20178. doi: 10.1039/C9NR06899F
Kumar A., Heilmann M., Latzel M., Kapoor R., Sharma I., Göbelt M., Christiansen S.H., Kumar V., Singh R. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes. Scientific Reports, 2016, Vol. 6, 27553. doi: 10.1038/srep27553
Song Y., Jeong H., Chung S., et al. Origin of multi-level switching and telegraphic noise in organic nanocomposite memory devices. Scientific Reports, 2016, Vol. 6, 33967. doi: 10.1038/srep33967
Luan X., Huang Y., Li Y., McMillan J.F., Zheng J., Huang S.-W., Hsieh P.-C., Gu T., Wang Di, Hati A., Howe D.A, Wen G., Yu M., Lo G., Kwong D.-L., Wong C.W. An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset. Scientific Reports, 2014, Vol. 4, 6842. doi: 10.1038/srep06842
Essick J. Hands-On Introduction to LabVIEW for Scientists and Engineers. Oxford Univ. Press, 2012, 624p.
Zhao M., Huang J.X., Wong M.H., et al. Versatile computer-controlled system for characterization of gas sensing materials. Review of Scientific Instruments, 2011, Vol. 82, Iss. 10, 105001. doi: 10.1063/1.3648132
Das A.D., Mahapatra K.K. Real-Time Implementation of Fast Fourier Transform (FFT) and Finding the Power Spectrum Using LabVIEW and Compact RIO. Proceeding of the International Conference on Communication Systems and Network Technologies, 2013, pp. 169-173. doi: 10.1109/CSNT.2013.45
Zhigal’skii G.P. 1/fnoise and nonlinear effects in thin metal films. Physics-Uspekhi, 1997, Vol. 40, pp. 599-622. DOI: 10.1070/PU1997v040n06ABEH000246
Scholz F., Hwang J.M., Schroder D.K. Low frequency noise and DLTS as semiconductor device characterization tools. Solid-State Electron, 1988, Vol. 31, No. 2, pp. 205-218. doi: 10.1016/0038-1101(88)90129-3
Yau L.D., Sah C.T. Theory and experiments of low-frequency generation-recombination noise in MOS-transistors. IEEE Trans. Electron. Devices, 1969, Vol. ED-16, No. 2, pp. 170-177. doi: 10.1109/T-ED.1969.16586
Kholomina T.A. Peculiarities of LF Noise Generation Processes in Semiconductor Barrier Structures. Bulletin of RGRTU, 2012, No. 39-2, pp. 117-121. [in Russian]
Zhigal’skii G.P., Kholomina T.A. Excess noise and deep levels in GaAs detectors of nuclear particles and ionizing radiation. J. Commun. Technol. Electron., 2015, Vol. 60 (6), pp. 517–542. doi: 10.1134/S1064226915060200
Ermachikhin A.V., Litvinov V.G. An Automated Measuring System for Current Deep-Level Transient Spectroscopy. Instruments and Experimental Techniques, 2018, Vol. 61, Iss. 2, pp. 277-282. doi: 10.1063/1.1663719
Sze S.M., Ng Kwok.K. Physics of Semiconductor Devices. Hoboken: Wiley, 2006, 815 p. doi: 10.1002/0470068329"