DEVELOPMENT OF ONBOARD CONTROL SYSTEM ARCHITECTURE FOR NANOSATELLITES

DEVELOPMENT OF ONBOARD CONTROL SYSTEM ARCHITECTURE FOR NANOSATELLITES

Authors

DOI:

https://doi.org/10.31489/2022No4/58-66

Keywords:

onboard computer, cube sat, software defined radio, Field-Programmable Gate Array

Abstract

This article presents development of the architecture of the onboard control system. In particular, the hardware and circuit solutions in the development of the module are presented. Technical solutions, the concept of the mechanical layout of the onboard control system and block diagrams of the presented modules of the onboard complex are also discussed. Main functions of the on-board software are described in details, which will help in design and development of ultra-small artificial satellites. This article serves as a new approach for how to effectively configure and operate the on-board control system.

References

"1 Arseno D., Edwar E., Harfian A.R., Salsabila J.N. Characterization of On Board Data Handling (OBDH) Subsystem. Proceeding of the IEEE 13th Intern. Conf. on Telecommunication Systems, Services, and Applications (TSSA), 2019. doi: 10.1109/TSSA48701.2019.8985466

Sarsenbayev Y., Mussina A., Ismailov U., Bychkov A. Spacecraft onboard control system. Detailed information: Utility model № 6912. 2022, p.1. Available at: gosreestr.kazpatent.kz/Utilitymodel/Details?docNumber=351783.

ESA KazSTSAT (Kazakh Science and Technology Satellite), 2022. Available at: www.eoportal.org/ satellite-missions/kazstsat#list-of-payloads-on-the-spaceflight-sso-a-rideshare-mission.

Omran E.A., Murtada W.A., Serageldin A. Spacecraft on-board real time software architecture for fault detection and identification. Proceeding of the 12th Intern. Conf. on Computer Engineering and Systems (ICCES), 2017. doi:10.1109/ICCES.2017.8275379

Ten V., Oralmagambetov B., Murushkin S., Bekembayev A. Absolute passive mode pecularities and applications for LEO missions. Proceeding of the 67th I Intern. Astronautical Congress, 2016. doi: IAC-16.D1.IP.5.x35477. Available at: www.iafastro.directory/iac/archive/browse/IAC-16/D1/IP/35477/

Verdict Media Limited. KazEOSat-1 Earth Observation Satellite. 2022. Available at: www.aerospace-technology.com/projects/kazeosat-1-earth-observation-satellite.

Wenker R., Legendre C., Ferragutoz M. On-board software architecture in MTG satellite. Proceeding of the IEEE Intern.Workshop on Metrology for AeroSpace, 2017. doi:10.1109/MetroAeroSpace.2017.7999588

Tipaldi M., Ferraguto M., Ogando T., Camatto G., Wittrock T., Bruenjes B., Glielmo L. Spacecraft autonomy and reliability in MTG satellite via On-board Control Procedures. Proceeding of the IEEE Intern. Workshop on Metrology for Aerospace, 2015, pp. 155 – 159. doi:10.1109/MetroAeroSpace.2015.7180645

Miranda DJF, Ferreira M, Kucinskis F, McComas D. A Comparative Survey on Flight Software Frameworks for ‘New Space’ Nanosatellite Missions. J Aerosp Technol Manag, 2019, V.11: e4619. Available at www.doi.org/10.5028/jatm.v11.1081

European Cooperation for Space Standardization Ground systems and operations - telemetry and tele-command packet utilization. Euro pean Cooperation for Space Standardization. Available at: ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-016/. ECSS-E-70-41C, 2016.

ISO. Road vehicles - Controller area network (CAN). Part 3: Low-speed, fault-tolerant, medium-dependent interface. Available at: www.iso.org/standard/36055.html. ISO 11898-3, 2006."

Downloads

Published online

2022-12-01

How to Cite

Alipbayev, K., Sarsenbayev, Y., Mussina А., & Nurgizat, Y. (2022). DEVELOPMENT OF ONBOARD CONTROL SYSTEM ARCHITECTURE FOR NANOSATELLITES. Eurasian Physical Technical Journal, 19(4(42), 58–66. https://doi.org/10.31489/2022No4/58-66

Issue

Section

Engineering
Loading...