METAL DESTRUCTION IN PROCESS OF MANUFACTURING PARTS FROM MOLYBDENUM AND NIOBIUM
DOI:
https://doi.org/10.31489/2023No2/5-11Keywords:
coatings, molybdenum, niobium, microstructure, aero thermoacoustic treatment, deformabilityAbstract
The effect of coatings with surface-active properties and aerothermoacoustic treatment on Mo and Nb stampability, mechanical properties, and microdistortions of the crystal lattice is considered. An improvement in the quality of products obtained by drawing using these technologies has been established due to an increase in plasticity and a decrease in microdistortions of the crystal lattice. Modification of the surface of the tool reduces distortion in the micro-regions of the crystal lattice, reducing the stresses of the 2nd and 3rd kind of deformed Nb and improving its formability and the quality of semi-finished products and finished products. Low formability of Mo and Nb is associated with the presence of brittle phases of lamellar and sharp-edged shape, which reduce ductility and toughness. For Nb, an additional negative factor is the presence of grains up to 40–50 μm in size.
References
Vorob’eva G.A., Remshev E.Yu. Effect of the Parameters of Aerothermoacoustic Treatment of 40Kh Steel
on the Acoustic Emission Parameters. Rus. Metall, 2016, Vol. 3, pp. 215–218. doi: 10.1134/S0036029516030162
Pranav G., Seong J., German R.M. Effect of die compaction pressure on densification behavior of
molybdenum powders. Int. J. Refrac. Met. Hard Mater, 2017, Vol. 25, No. 1, pp. 16–24. doi:
1016/j.ijrmhm.2005.10.014
Wang Y., Li F. Study on hot deformation characteristics of molybdenum based on processing map. Xiy.
Jinsh. Cail. Yu Gongc, 2009, Vol. 38, № 8, pp. 1358–1362.
Materials science. 11
.
Schade P., Bartha L. Deformation and properties of PM molybdenum and tungsten. Int. J. Ref. Metal. Hard
Mater, 2002, Vol. 20, № 4, pp.259–260. doi: 10.1016/S0263-4368(02)00071-9
Yoshinaga H. Grain-boundary structure and strength in high temperature materials. Mater. Trans. JIM,
, Vol.31, No. 4, pp. 233–248.
Watanabe T., Tsurekawa S. Control of brittleness and development of desirable mechanical properties in
polycrystalline systems by grain boundary engineering. Acta Mater, 1990, Vol. 47, No. 15, pp. 4171–4185. doi:
1016/S1359-6454(99)00275-X
Shigeaki K., Sadahiro T., Tadao W. Grain boundary hardening and triple junction hardening in
polycrystalline molybdenum. Acta Mater, 2005, Vol. 53, pp.1051–1057. doi: 10.1016/j.actamat.2004.11.002
Wang D., Yuan X., Li Z. Progress of research and applications for Mo metal and its alloys. Rare Metal.
Let, 2006, Vol. 25, No. 12, pp.1–7. doi: 10.3390/met10020279
Garg P., Park S. German Randall M. Effect of die compaction pressure on densification behavior of
molybdenum powders. Int. J. Ref. Metal. Hard Mater, 2007, Vol. 25, pp. 16–24. doi: 10.1016/j.ijrmhm.2005.10.014
Wang Y., Li F. Numerical simulation of radial precision forging technology for metal molybdenum. Xiy.
Jinsh. Cail. Yu Gongc, 2009, Vol. 38, No. 12, pp. 2136–2140.
Laribi M., Vannes A.B., Treheux D. Study of mechanical behavior of molybdenum coating using sliding
wear and impact tests. Wear, 2007, Vol. 262, No. 11–12, pp. 1330–1336. doi: 10.1016/j.wear.2007.01.018
Ciulik J., Taleff E.M. Power-law creep of powder-metallurgy grade molybdenum sheet. Mater. Sci. Eng. A,
, Vol. 463, No. 1–2, pp. 197–202. doi: 10.1016/j.msea.2006.09.113
Wang Y., Gao J., Gongming C. Properties at elevated temperature and recrystallization of molybdenum
doped with potassium, silicon and aluminum. Int. J. Ref. Metal. Hard Mater, 2008, Vol. 26, No. 1, pp. 9–13.
doi:10.1016/j.ijrmhm.2007.01.009
Hampel A.C. Rare metals handbook, second edition. New York. 1971, 350 p. doi: 10.1149/1.2427960
Brauner A., Nunes C.A., Bortolozo A.D., et al. Superconductivity in the new Nb5Si3−xBx phase. Sol. State
Comm, 2009, Vol. 149, No. 11-12, pp. 467-470. doi:10.1016/j.ssc.2008.12.037
Santos F.A., Ramos A.S., Santos C., et al. Obtaining and stability verification of superconducting phases of
the Nb–Al and Nb–Sn systems by mechanical alloying and low-temperature heat treatments. J. all. Comp, 2010, Vol.
, No. 1-2, pp. 187-195. doi:10.1016/j.jallcom.2009.11.011
Hansen N. Cold deformation microstructures. Mater. Sci. Tech, 1990, Vol. 6, No. 11, pp. 6 - 19.
doi:10.1179/mst.1990.6.11.1039
Borges D.G., Márcia R.B. Microstructural and Mechanical Characterization of the Niobium Cold
Deformed-Swage. Mater Sci. For, 2015, Vol. 805, pp. 362-367. doi:10.4028/www.scientific.net/MSF.805.362
Sharif A.A., Misra A., Mitchell T.E. Deformation mechanisms of polycrystalline MoSi2 alloyed with 1494
at.% Nb. Mater. Sci. Eng. A, 2013, Vol. 358, No. 1-2, 279–287. doi:10.1016/S0921-5093(03)00307-1
Carolin Z., James S.K-L. Low temperature deformation of MoSi2 and the effect of Ta, Nb and Al as
alloying elements. Acta Mater, 2019, Vol. 181, pp. 385-398. doi:10.1016/j.actamat.2019.09.008
Volokitina I., Nayzabekov A., Volokitin A. Influence of torsion under high pressure on the change in the
microstructure of microalloyed