OPTICAL PROPERTIES OF CARBON CONTAINING NANOCOMPOSITE FILMS BASED ON THE POLYSTYRENE-FULLERENE C60 SYSTEM
DOI:
https://doi.org/10.31489/2023No3/27-34Keywords:
nanocomposite polymer films, carbon nanoparticles, fullerene, polystyreneAbstract
Carbon-based nanocomposites have attracted significant attention due to their unique properties and potential for use in various technological applications. In this study, experimental investigations were conducted to determine the spectral properties of carbon-containing nanocomposite polymer films based on polystyrene (PS) with fullerene C60 nanoadditives. The results indicate that the incorporation of fullerene nanoparticles into the PS matrix enhances the optical properties of the material. Specifically, the optical density of the samples increases, the absorption coefficient increases, and the width of the bandgap decreases with an increase in carbon additive concentration. These findings suggest that fullerene-based nanocomposites are promising materials for optoelectronic and nanotechnological applications. The results of this work contribute to the growing body of research on carbon-based nanocomposites and their potential for use in a range of fields, including electronics, energy storage, and sensing applications. The enhanced optical properties of fullerene-based nanocomposites suggest that they may be particularly useful for developing novel optoelectronic devices and sensors. Overall, this study highlights the potential of fullerene-based nanocomposites as a versatile and promising material platform for various technological applications.
References
Etman M., Bedewy M.K., Khalil H.A., Azzam B.S. Carbon nanotubes reinforced polymer matrix nanocomposites. International Journal of Nanoparticles, 2009, Vol.2, No. 1/2/3/4/5/6, pp. 339 – 353. doi:10.1504/IJNP.2009.028768
Annu A., Singh A., Singh P.K., Bhattacharya B. Effect of carbon nanotubes as dispersoid in polymer electrolyte matrix. Journal of Material Science: Materials in Electronics, 2018, Vol. 2, No. 11. doi:10.1007/s10854-018-9008-1
Liu С.X., Choi J.W. Improved Dispersion of Carbon Nanotubes in Polymer at High Concentrations. Nanomaterials, 2012, Vol 2, No. 4, pp. 329 – 347. doi:10.3390/nano2040329
Akter T., Barile C., Ahammad A.J.S. Introduction, and overview of carbon nanomaterial-based sensors for sustainable response. Carbon Nanomaterials-Based Sensors, 2022, Vol. 2, No. 23, pp. 395 ‒ 416. doi:10.1016/B978-0-323-91174-0.00018-4
Nassrollahzadeh M., Sajadi S.M., Sajjadi M., Issaabadi Z. Nanomaterails and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Interface Science and Technology, 2019, Vol. 28, pp. 1-27. doi:10.1016/B978-0-12-813586-0.00001-8
Yellampalli S. Carbon Nanotubes-Polymer, Nanosomposites. Rijeka, Croatia, 2011, 410 p.
El-Nahass M. M., Ali H. A. M., Gadallah A. S., Atta Khedr M., Afify H. A. Analysis of structural and optical properties of annealed fullerene thin films. The European Physical Journal D, 2015, Vol. 69:200. doi:10.1140/epjd/e2015-60174-8
Aziz S.B., Ahmed H.M., Hussein A.M., Fathulla A.B., Wsw R.M., Hussein R.T. Tunning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. J. Mater. Sci. Mater. Electron, 2015, Vol. 26, pp. 8022-8028. doi:10.12691/pmc-3-2-1
Grazulevicius J.V., Strohriegl P., Pielichowski J., Pielichowski K. Carbazole-containing polymers: synthesis, properties, and applications. Progress in Polymer Science, 2003, Vol. 28, No 9, pp. 1297 – 1353. doi:10.1016/s0079-6700(03)00036-4
Hassanien A.M., Atta A.A., Ward A.A., Ahmed E.M. Investigation of structural, electrical and optical properties of chitosan/fullerene composites. Materials Research Express, 2019, Vol. 6, No 12. doi: 10.1088/2053-1591/ab5295
Gao Y., Wu X., Zeng X.C. Designs of fullerene-based frameworks for hydrogen storage. J. Mater. Chem. A. 2014, Vol. 2, pp. 5910-5914. doi:10.1039/C3TA13426A
Züttel A. First principles investigation of energetics and electronic structures of Ni and Sc Co-Doped MgH2. Materials for Hydrogen Storage. Mater. Today, 2003, Vol. 6, No. 9, pp. 24-33. doi:10.1016/S1369-7021(03)00922-2
Vasil’ev Y.V., Hirsch A., Taylor R., Drewello T. Hydrogen on fullerenes: hydrogenation of C59N. using C60H36 as the source of hydrogen. Chem. Communications, 2004, Vol. 15, pp. 1752-1753. doi:10.1039/b405353m
Lo S. C., Burn P.L. Development of dendrimers: macromolecules for use in organic light emitting diode and solar cells. Chemical. Reviews, 2007, Vol. 107, pp. 1097 - 1116. doi:10.1021/cr050136l,
Taylor R., Drewello T. Hydrogen on fullerenes: hydrogenation of C59N. using C60H36 as the source of hydrogen. Chem. Communications, 2004, Vol. 15, pp. 1752-1753. doi:10.1039/b405353m
Katz E.U. Potential of fullerene-based materials for the utilization of solar energy. Physics of the Solid State, 2002, Vol. 44, No. 4, pp. 647-651. doi: 10.1134/1.1470549
Yang X., Ebrahimi A., Li J., Cui Q. Fullerene-biomolecule conjugates and their biomedicinal applications. International Journal Nanomedicine, 2014,Vol. 9, No 1, pp. 77 - 92. doi:10.2147/IJN.S52829
Tanzi L., Terrenzi M., Zhang Y. Sythesis and biological application of glycol- and peptide derivatives of fullerene C60. European Journal of Medicinal Chemistry, 2022, Vol. 230. doi:10.1016/j.ejmech.2022.114104
Sun H.T, Sakka Y. Luminescent metal nanoclusters: controlled synthesis and functional applications. Sci Technol Adv Mater., 2013, Vol. 15, No.1. doi:10.1088/1468-6996/15/1/014205
Kanel S.R., Nadagouda M.N., Nakarmi A., Malakar A., Ray C., Pokhrel L.R. Assessment of health, afety, and economics of surface modified nanomaterials for catalyc applications. Surface Modified Nanomaterials for Applications in Catalysis, 2022, Vol. 22, pp. 289-317. doi:10.1016/B978-0-12-823386-3.00009-X
Ramazani A., Moghaddasi M.A., Malekzhadeh A. M, Rezayati S., Hanifehpour Y., Joo S.W. Industrial oriented approach on fullerene preparation methods. Inorganic Chemistry Communications, 2021, Vol. 125, p.108442. doi:/10.1016/j.inoche.2021.108442
Ghavanloo E., Rafii-Tabar H., Kausar A., Giannopoulos G.I., Fazelzadeh S.A. Experimental and computational physics of fulerenes and their nanocomosites: synthesis, thermo-mechanical characteristics and nanomedicine applications. Physics Reports, 2023, Vol. 996, pp. 1 - 116. doi:10.1016/j.physrep.2022.10.003
Nieto-Márquez A., Romero R., Romero A., Valverde J. L. Carbon nanospheres: synthesis, physicochemical properties and applications. Journal of Materials Chemistry, 2011, Vol. 21, pp. 1664 - 1672. doi: 10.1039/C0JM01350A
Mugadza K., Stark A., Ndungu P.G., Nyamori V.O. Synthesis of carbon nanomaterials from biomass utilizing ionic liquids for potential application in solar energy conversion and storage. Materials, 2020, Vol. 13, No. 18. doi:10.3390/ma13183945
Zaytseva O., Neumann G. Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chemical and Biological Technologies in Agriculture, 2016, Vol. 3, No. 17. doi:10.1186/s40538-016-0070-8
Biglova Y.N., Mustafin A.G. Nucleophilic cyclopropanation of [60] fullerene by the addition-elimination mechanism. RSC Advances, 2019, Vol. 9, pp. 22428-22498. doi:10.1039/C9RA04036F
Torres F. J., Civalleri B., Pisani C., Musto P., Albunia A.R., Guerra G. Normal vibrational analysis of a trans-planar syndiotactic polysterene-chain. Journal Phys. Chem. B, 2007, Vol. 111, pp. 6327 - 6335. doi:10.1021/jp072257q
Basiuk V.A., Kolokoltsev Y., Amelines-Sarria O. Noncovalent interaction of meso-tetraphenylprophine with C60 fullerene as studied by several DFT methods. Journal of Nanoscience and Nanotechnology, 2011, Vol. 11, No.6, pp. 5519 - 5525. doi:10.1166/jnn.2011.3442
Kausar A., Taheran R. Electrical conductivity behavior of polymer nanocomposite with carbon nanofillers. Electrical Conductivity in Polymer-Based Composites, 2019, Vol. 3, pp. 41-72. doi:10.1016/B978-0-12-812541-0.00003-3
Zemtsova E.G., Arbenin A.Yu., Sidorov Y.V., Morozov N.F., Korusenko P.M., Semenov B.N., Smirnov V.M. The use of crbon-containing compounds to prepare functional and structural composite materials. Applied Sciences, 2022, Vol. 12(19). doi:10.3390/APP12199945
Sanz A., Wong H.C., Nedoma A. J., Douglas J. F., Cabral J. T. Influence of C60 fullerenes on the glass formation of polystyrene. Polymer, 2015, Vol. 68, pp. 47-56. doi: 10.1016/j.polymer.2015.05.001
Krishnamoorti R., Vaia R.A. Polymer nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 2007, Vo.45, No. 24, pp. 3252 - 3256. doi:10.1002/polb.21319
Wong H.C., Cabral J. T. Domain orientation and grain coarsening in cylinder-forming polysterene-b-methyl methalcrylate films. Macromolecules, 2011, Vol. 44, No. 11, pp. 4530-4537. doi:10.1021/ma2004458
Blazejczyk A., Jastrzebski C., Wierzbicki M. Change in conductive-radiative heat transfer mechanism forced by graphite microfiller in expanded polysterene thermal insulation-experimental and simulated investigations. Materials, 2020, Vol. 13, No. 11. doi:10.3390/ma13112626
Kajiyama T., Tanaka K., Satomi N., Takahara A. Surface glass transition temperatures of monodisperse polysterene films by scanning force microscopy. Science and Technology of Advanced Materials, 2000, Vol.1, No.1. pp. 31-35. doi:10.1016/S1468-6996(99)00005-4
Harris P.J.F. Fullerene Polymers: a brief review. Carbon-Rich Compounds: From Molecules to Materials, 2020, Vol. 6, No.4. doi:10.3390/c6040071
Satayeva G.Е., Bekmukhanbetova D.B., Amangeldy N., Yergaliuly G. Research of Nanomaterials by the Spectroscopy Methods. Astana, L.N. Gumilyov Eurasian National University, 2022, 108 p.