INFLUENCE OF PLASMON EFFECT ON THE SENSITIZATION OF TITANIUM DIOXIDE BY DYE MOLECULES

INFLUENCE OF PLASMON EFFECT ON THE SENSITIZATION OF TITANIUM DIOXIDE BY DYE MOLECULES

Authors

DOI:

https://doi.org/10.31489/2024No1/49-56

Keywords:

semiconductor, dye, core-shell nanostructure, plasmon effect, charge transfer, sensitization

Abstract

The influence of the plasmon effect of metal nanoparticles on electron transfer from Eosin and Rhodamine B dyes to TiO2 was studied. Spectral-kinetic measurements showed that, compared to SiO2, not only the intensity but also the fluorescence lifetime of both dyes decreases on the TiO2 surface, which indicates the charge transfer from the dye to the semiconductor. In the presence of core@shell (Ag@TiO2) plasmon nanostructures, an intensification of the fluorescence of both dyes is observed, as well as a decrease in the duration of the dyes emission. The optimal concentration for which the maximum plasmon effect was recorded is 3 wt% of Ag@TiO2. The plasmon effect also leads to an increase in the efficiency of sensitization of the semiconductor by molecules of the dyes under study, which is expressed as an increase in the photovoltaic and charge-transport characteristics of the semiconductor films. The results obtained on the plasmon effect on the charge transfer process in the dye/semiconductor system can be used in the development of devices for photovoltaics, photocatalytic, and optoelectronic elements.

References

Pourasl H.H., Barenji R.V., Khojastehnezhad V.M. Solar energy status in the world: A comprehensive review. Energy Reports, 2023, Vol. 10, pp. 3474 – 3493. https://doi.org/10.1016/j.egyr.2023.10.022

Chiarello G.L., Dozzi M.V., Selli E. TiO2–based materials for photocatalytic hydrogen production. Journal of Energy Chemistry. 2017, Vol. 26(2), pp. 250–258. https://doi.org/10.1016/j.jechem.2017.02.005

Ibrayev N., Seliverstova E., Aimukhanov A., Serikov T. Role of energy transfer in conversion of light to electric energy. Molecular Crystals and Liquid Crystals. 2014, Vol. 589, pp. 202 – 208. https://doi.org/10.1080/15421406.2013.872827

Sun X.Y., Wang C.Y., Su D.W., Wang G., Yunhao Z. Application of photocatalytic materials in sensors. Advanced Materials Technologies, 2020, Vol. 5, рр.1900993. https://doi.org/10.1002/admt.201900993

Tong H, Ouyang S.X., Bi Y.P., Umezawa N., Oshikiri M., Ye J. Nano-photocatalytic materials: possibilities and challenges. Advanced Materials. 2012, Vol. 24, рр. 229 – 251. https://doi.org/10.1002/adma.201102752

Clifford J.N., Martínez–Ferrero E., Viterisi A., Palomares E. Sensitizer molecular structure–device efficiency relationship in dye sensitized solar cells. Chemical Society Reviews. 2011, Vol. 40(3), рр. 1635 – 1646. https://doi.org/10.1039/B920664G

Ardo S., Meyer G.J. Photo-driven heterogeneous charge transfer with transition–metal compounds anchored to TiO2 semiconductor surfaces. Chemical Society Reviews. 2009, Vol. 38(1), рр. 115-164. https://doi.org/10.1039/B804321N

Haque S.A., Palomares E., Cho B.M., Green A. N. M., Hirata N., Klug D. R., Durrant, J. R. Charge separation versus recombination in dye–sensitized nanocrystalline solar cells: the minimization of kinetic redundancy. Journal of the American Chemical Society. 2005, Vol. 127(10), рр. 3456 – 3462. https://doi.org/10.1021/ja0460357

Anderson N.A., Lian T.Q. Ultrafast electron transfer at the molecule–semiconductor nanoparticle interface. Annual Review of Physical Chemistry. 2005, Vol. 56(1), рр. 491–519. https://doi.org/10.1146/annurev.physchem.55.091602.094347

Regan B.O., Grätzel M. A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature. 1991, Vol. 353(6346), рр. 737 – 740. https://doi.org/10.1038/353737a0

Hagfeldt A., Boschloo G., Sun L., Kloo L., Pettersson H. Dye-sensitized solar cells. Chemical Reviews, 2010, Vol. 110(11), рр.6595 – 6663. https://doi.org/10.1021/cr900356p

Listorti A., O’Regan B., Durrant J. R. Electron transfer dynamics in dye sensitized solar cells. Chemistry of Materials. 2011, Vol. 23, рp. 3381. https://doi.org/10.1021/cm200651e

Wang J., Liu K., Ma L., Zhan X. Triarylamine: Versatile platform for organic, dye-sensitized, and perovskite solar cells. Chemical Reviews. 2016, Vol. 116(23), рр. 14675 – 14725. https://doi.org/10.1021/acs.chemrev.6b00432

Zhou N., López-Puente V., Wang Q., Polavarapu L., Pastoriza-Santos I., Xu Q.-H. Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Advances. 2015, Vol. 5, pp. 29076-29097. https://doi.org/10.1039/C5RA01819F

Adnan A., Fedwa E., Anirban M., Brahim A. Research progress of plasmonic nanostructure-enhanced photovoltaic solar cells. Nanomaterials. 2022, Vol. 12(5), рр. 788. https://doi.org/10.3390/nano12050788

Ibrayev N., Omarova G., Seliverstova E., Ishchenko A., Nuraje N. Plasmonic effect of Ag nanoparticles on polymethine dyes sensitized titanium dioxide. Engineered Science. 2021, Vol. 14, рр. 69 – 77. https://doi.org/10.30919/es8d1168

Jiang N., Zhuo X., Wang J. Active plasmonics: principles, structures and applications. Chemical Reviews, 2018, Vol. 118(6), рр. 3054 – 3099. https://doi.org/10.1021/acs.chemrev.7b00252

Biswas C, Ahmed S., Santosh S., Kumar R.S.S. Ultrafast electron injection kinetics and effect of plasmonic silver nanoparticle at organic dye-TiO2 interface. Asian Journal of Physics. 2021, Vol. 30(6), рр. 933 – 945. https://doi.org/10.54955/AJP.30.6.2021.933-945

Geddes C.D., Lakowicz J.R. Metal–enhanced fluorescence. Journal of Fluorescence, 2002, Vol. 12, рр. 121 – 129. https://doi.org/10.1023/A:1016875709579

Maier S.A. Plasmonics fundamentals and applications. NY, Springer, 2007, 209p. https://doi.org/10.1007/0-387-37825-1

Zhang B., Zhao Y., Liang W. Collaborative effect of plasmon-induced resonance energy and electron transfer on the interfacial electron injection dynamics of dye-sensitized solar cell. The Journal of Chemical Physics.2019, Vol.151(4), рр. 044702. https://doi.org/10.1063/1.5111601

Yang M., Moroz P., Jin Z., Budkina D. S., Sundrani N., Porotnikov D., Zamkov M. Delayed photoluminescence in metal-conjugated fluorophores. Journal of the American Chemical Society, 2019, Vol. 141(28), рр. 11286 – 11297. https://doi.org/10.1021/jacs.9b04697

Afanasyev D.A., Ibrayev N.Kh., Serikov T.M., Zeinidenov A.K. Effect of the titanium dioxide shell on the plasmon properties of silver nanoparticles. Russian Journal of Physical Chemistry A. 2016, Vol. 90(4), рр. 833 – 837. https://doi.org/10.1134/S0036024416040026

Becker W. The BH TCSPC e-Handbook, 2023. https://www.becker-hickl.com/literature/documents/flim/the-bh-tcspc-handbook

Ibrayev N.Kh., Seliverstova E. V., Valiev R. R., Kanapina A. E., Ishchenko A. A., Kulinich A. V., Kurten T., Sundholm D. Influence of plasmons on the luminescence properties of solvatochromicmerocyanine dyes with different solvatochromism. Physical Chemistry Chemical Physics. 2023, Vol. 25, рр. 22851 – 22861. https://doi.org/10.1039/D3CP03029F

Kanapina A.E., Seliverstova E.V., Ibrayev N.K., Derevyanko N.A., Ishchenko A.A. Features of the decay of excited states of ionic dyes in the near field of metal nanoparticles. Eurasian Physical Technical Journal. 2023, Vol. 20, No. 2(44), рр. 106 – 111. https://doi.org/10.31489/2023NO2/106-111

Ibrayev N.Kh., Seliverstova E.V., Omarova G.S., Derevyanko N.A., Khamza T., Photovoltaic properties of functionalized indodicarbocyanine dye. Eurasian Physical Technical Journal, 2022, Vol. 19(3), рр. 55–59. https://doi.org/10.31489/2022No3/55-59

Ito S., Murakami T.N., Comte P., Liska P., Grätzel C., Nazeeruddin M.K., Grätzel M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008, Vol.516(14), рр. 4613 – 4619. https://doi.org/10.1016/j.tsf.2007.05.090

Yang C.C., Zhang H., Zheng Y. DSSC with a novel Pt counter electrodes using pulsed electroplating techniques. Current Applied Physic. 2011, Vol. 11, pp. S147-S153. https://doi.org/10.1016/j.cap.2010.11.012

Bisquert J., Garcia-Belmonte G., Fabregat-Santiago F., Bueno P.R. Theoretical models for ac impedance of finite diffusion layers exhibiting low frequency dispersion. Journal of Electroanalytical Chemistry. 1999, Vol. 475, рр.152 – 63. https://doi.org/10.1016/S0022-0728(99)00346-0

Zhang F., Shi F., Ma W., Gao F., Jiao Ya. Controlling adsorption structure of Eosin Y dye on nanocrystalline TiO2 films for improved photovoltaic performances. The Journal of Physical Chemistry C, 2013, Vol. 117. рр. 14659 – 14666. https://doi.org/10.1021/jp404439p

Kim H., Do–Hyun L., Son Y. Electrochemical study on Rhodamine 6G–indole, based dye for HOMO and LUMO energy levels. Textile Coloration and Finishing. 2013, Vol.25(1), рр. 83 – 88. https://doi.org/10.5764/TCF.2013.25.1.7

Seliverstova E., Ibrayev N., Omarova G., Ishchenko A., Kucherenko M. Competitive influence of the plasmon effect and energy transfer between chromophores and Ag nanoparticles on the fluorescent properties of indopolycarbocyanine dyes. Journal of Luminescence. 2021, Vol. 235, р. 118000. https://doi.org/10.1016/j.jlumin.2021.118000

Downloads

Published online

2024-03-29

How to Cite

Omarova Г., Serikov Т., Seliverstova Е., Auzhanova А., & Ibrayev Н. (2024). INFLUENCE OF PLASMON EFFECT ON THE SENSITIZATION OF TITANIUM DIOXIDE BY DYE MOLECULES. Eurasian Physical Technical Journal, 21(1(47), 49–56. https://doi.org/10.31489/2024No1/49-56

Issue

Section

Materials science
Loading...