Мыс оксиді қабыршақтарының морфологиясына анодтау режимдерінің әсерін зерттеу
DOI:
https://doi.org/10.31489/2022No3/5-9Кілт сөздер:
нанокеуекті, мыс оксиді, электрхимиялық анодтау, фосфор қышқылы, атомды-күштік микроскопияАңдатпа
Берілген жұмыста бір сатылы электрхимиялық анодтау әдісімен алынған Cu2O қабыршақтарының беткі морфологиясы туралы тәжірибелік мәліметтер келтірілген. Процесс фосфор қышқылы негізіндегі электролитте 90 секунд бойы 13°C температурада 50В тұрақты потенциалмен жүргізілген. Тәжірибелік жұмыс барысында синтездің оптималды параметрлері анықталды. Мыс кеуекті қабыршақтардың морфологиясы Ntegra Therma (NT-MDT) атомды-күштік микроскопияның көмегімен зерттелген. Тәжірибелік жұмыстардың нәтижелері бойынша анодтау процесінің параметрлеріне байланысты мыс оксидінің кеуек диаметрі бірнеше ондаған нанометрден жүздеген микронға дейін өзгеруі мүмкін екендігі анықталған.
References
Deng S., Tjoa V., Fan H.M., Tan H.R., Sayle D.C., Olivo M., Mhaisarkal S., Wei J., Sow C.H. J. Am. Chem. Soc. 2012, 134: 4905. https://doi.org/10.1021/ja211683m
De Jongh P.E., Vanmaekelbergh D., Kelly J.J.D. J. Electrochem. Soc. 2000, 147:486. https://doi.org/10.1149/1.1393221
Musselman K.P., Wisnet A., Iza D.C., Hesse H.C., Scheu C., Macmanus-Driscoll J.L., Schmidt-Mende L. Adv. Mater. 2010, 22:254-258. https://doi.org/10.1002/adma.201001455
Bhaumik A., Haque A., Karnati P., Taufique M., Patel R. and Ghosh K. 2014, 572:126–133. https://doi.org/10.1016/j.tsf.2014.09.056
Dong X., Wang K., Zhao C., Qian X., Chen S., Li Z., Liu H., Dou S. J. Alloy. Compd. 2014, 586:745-753. http://dx.doi.org/10.1016/j.jallcom.2013.10.078
Poreddy R., Engelbrekt C. and Riisager A. Catal. Sci. Technol. 2015, 5:2467–2477. https://doi.org/10.1039/C4CY01622J
Wang H.Y. and Fan C.G. Solid State Sci. 2013, 16:130–133. https://doi.org/10.1016/j.solidstatesciences.2012.11.009
Xu L., Yang Q., Liu X., Liu J. and Sun X. RSC Adv. 2014, 4:1449–1455. https://doi.org/10.1039/C3RA45598J
Gao J., Li Q., Zhao H., Li L., Liu C., Gong Q. and Qi L. Chem. Mater. 2008, 20:6263–6269. https://doi.org/10.1021/cm801407q
Kar P., Farsinezhad S., Zhang X. and Shankar K. Nanoscale 2014, 6:14305–14318. https://doi.org/10.1039/C4NR05371K
Khanehzaei H., Ahmad M.B., Shameli K., Ajdari Z. Int. J. Electrochem. Sci. 2014, 9:8189-8198.
Wu X., Bai H., Zhang J., Chen F.E., Shi G. J. Phys. Chem. B. 2005, 109:22836-22842. https://doi.org/10.1021/jp054350p
Wang P., Wu H., Tang Y., Amal R., Ng Y.H. J. Phys. Chem. C 2015, 119:26275-26282. https://doi.org/10.1021/acs.jpcc.5b07276
Allam N.K., Grimes C.A. Mater. Lett. 2011, 65:1949-1955. https://doi.org/10.1016/j.matlet.2011.03.105
Mohammadpour A., Eltahlawy M., Martino A., Askar A.M., Kisslinger R., Fedosejevs R. and Shankar K. J. Nanosci. Nanotechnol. 2017, 17:5019–5023. https://doi.org/10.1166/jnn.2017.13309
Shu X., Zheng H., Xu G., Zhao J., Cui L., Cui J., Qin Y., Wang Y., Zhang Y., Wu Y. Appl. Surf. Sci. 2017, 412:505-516. https://doi.org/10.1016/j.apsusc.2017.03.267
Kar P., Khairy El-Tahlawy M., Zhang Y., Yassin M., Mahdi N., Kisslinger R., Thakur U.K., Askar A.M., Fedosejevs R. and Shankar K. J. Phys. Commun. 2017, 1:045012. https://doi.org/10.1088/2399-6528/aa93a4
Voon C.H., Lim B.Y., Gopinath S.C.B., Al-douri Y., Foo K.L., Md Arshad M.K., Ten S.T., Ruslinda A.R., Hashim U., Tony V.C.S. 2018, 36(2):209-216 https://doi.org/10.1515/msp-2018-0035