Күміс наноболшектерінің синтезі және олардың антраценнің флуоресценциясы мен сіңіруіне әсері.
DOI:
https://doi.org/10.31489/2025N3/48-54Кілт сөздер:
күміс аралша қабықшалары, антрацен, pH, ImageJАңдатпа
Жұмыста ерітіндінің рН мәнінің арал тәрізді күміс қабықшаларының түзілу процесіне әсері қарастырылды. Зерттеу нәтижелері бойынша тиімді синтез жүргізу үшін оңтайлы рН мәні 8 екені анықталды. ImageJ бағдарламасы көмегімен Ферет диаметрі бойынша бөлшектердің таралуы талданды. Алынған гистограмма химиялық жолмен тұндырылған қабықшаның сапасының жоғары екенін растады. Ұсынылған синтез әдісі берілген қасиеттері бар күміс нанобөлшектерінің қабықшаларын алуға мүмкіндік береді. Синтезделген күміс қабықшаларының антраценнің люминесценттік қасиеттеріне әсері зерттеліп, олардың фотоника мен сенсорлық технологияларда қолдану мүмкіндігі көрсетілді.
References
Novotny L., Hecht B. (2006) Principles of nano-optics (p. 539). Cambridge University Press. https://doi.org/10.1017/CBO9780511813535 DOI: https://doi.org/10.1017/CBO9780511813535
Harrison R.K., Ben-Yakar A. (2010) Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on silicon substrate. Optics Express, 18, 22556–22571. https://doi.org/10.1364/OE.18.022556 DOI: https://doi.org/10.1364/OE.18.022556
Omarova G.S., Serikov T M., Seliverstova E.V., Auzhanova A.A., Ibrayev N.Kh. (2024) Influence of plasmon effect on the sensitization of titanium dioxide by dye molecules. Eurasian Physical Technical Journal, 21(47), 49–56. https://doi.org/10.31489/2024No1/49-56 DOI: https://doi.org/10.31489/2024No1/49-56
Xiao X.H., Rodriguez R.S., Haynes C.L., Ozaki Y., Zhu B. (2021) Surface-enhanced Raman spectroscopy. Springer Nature. https://doi.org/10.1038/s43586-021-00083-6 DOI: https://doi.org/10.1038/s43586-021-00083-6
Brosseau C.L., Colina A., Perales-Rondon J.V., Wilson A.J., Joshi P.B., Ren B., Wang X. (2023) Electrochemical surface-enhanced Raman spectroscopy. Nature Reviews, 3(79). https://doi.org/10.1038/s43586-023-00263-6 DOI: https://doi.org/10.1038/s43586-023-00263-6
Krivenkov V., Samokhvalov P., Nabiev I., Rakovich Y.P. (2020) Synergy of excitation enhancement and the Purcell effect for strong photoluminescence enhancement in a thin-film hybrid structure based on quantum dots and plasmon nanoparticles. Journal of Physical Chemistry Letters, 11(19), 8018–8025. https://doi.org/10.1021/acs.jpclett.0c02296 DOI: https://doi.org/10.1021/acs.jpclett.0c02296
Kumbhakar P., Biswas S. (2019) Resonance energy transfer-assisted random lasing in light-harvesting bio-antenna enhanced with a plasmonic local field. RSC Advances, 9(65), 37705–37713. https://doi.org/10.1039/c9ra08166f DOI: https://doi.org/10.1039/C9RA08166F
Ibrayev N.K., Aimukhanov A.K. (2019) Influence of plasmon resonance in silver nanoparticles on the properties of stimulated emission of 1,3,5,7,8-pentamethyl-2,6-diethylpyrromethene-difluoroborate molecules in film of porous aluminum oxide. Optics and Laser Technology, 115, 246–250. https://doi.org/10.1016/j.optlastec.2019.02.040 DOI: https://doi.org/10.1016/j.optlastec.2019.02.040
Seliverstova E.V., Ibrayev N.K. (2016) Plasmon-enhanced stimulated emission of chromene dye. Journal of Physics: Conference Series, 735, 012018. https://doi.org/10.1088/1742-6596/735/1/012018 DOI: https://doi.org/10.1088/1742-6596/735/1/012018
Temirbayeva D., Ibrayev N., Seliverstova E., Kudinova M., Ishchenko A. (2022) Plasmon effect on triplet-singlet energy transfer in the dye-doped Langmuir-Blodgett films. Bulletin of the Karaganda University: Physics Series, 4(108), 6–13. https://doi.org/10.31489/2022ph4/6-13 DOI: https://doi.org/10.31489/2022ph4/6-13
Seliverstova E.V., Ibrayev N.K., Zhumabekov A.Z. (2020) The effect of silver nanoparticles on the photodetecting properties of the TiO2/graphene oxide nanocomposite. Optics and Spectroscopy, 128, 1449–1457. https://doi.org/10.1134/s0030400x20090192 DOI: https://doi.org/10.1134/S0030400X20090192
Kadir A., Leonenko Z., Lakowicz J.R., Geddes C.D. (2005) Annealed silver-island films for applications in metal-enhanced fluorescence: Interpretation in terms of radiating plasmons. Journal of Fluorescence, 15(5), 643–654. https://doi.org/10.1007/s10895-005-2970-z DOI: https://doi.org/10.1007/s10895-005-2970-z
Krutyakov Y.A., Kudrinsky A.A., Olenin A.Yu., Lisichkin G.V. (2008) Synthesis and properties of silver nanoparticles: Achievements and prospects. ChemInform, 77(3). https://doi.org/10.1002/chin.200835228 DOI: https://doi.org/10.1002/chin.200835228
Liao D.L., Liao B.Q. (2007) Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants. Journal of Photochemistry and Photobiology A: Chemistry, 187, 363–369. https://doi.org/10.1016/j.jphotochem.2006.11.003 DOI: https://doi.org/10.1016/j.jphotochem.2006.11.003
Zhan C., Yi J., Hu S., et al. (2023) Plasmon-mediated chemical reactions. Nature Reviews Methods Primers, 3(12). https://doi.org/10.1038/s43586-023-00195-1 DOI: https://doi.org/10.1038/s43586-023-00195-1
Stranik O., McEvoy H. M., McDonagh C., MacCraith B.D. (2005) Plasmonic enhancement of fluorescence for sensor applications. Sensors and Actuators B: Chemical, 107(1), 148–153. https://doi.org/10.1016/j.snb.2004.08.032 DOI: https://doi.org/10.1016/j.snb.2004.08.032
Agrawal N., Saxena R., Kumar S. (2022) Recent advancements in plasmonic optical biosensors: A review. ISSS Journal of Micro and Smart, 11, 31–42. https://doi.org/10.1007/s41683-021-00079-0 DOI: https://doi.org/10.1007/s41683-021-00079-0
Deng W., Goldys E.M. (2012) Plasmonic approach to enhanced fluorescence for applications in biotechnology and the life sciences. Langmuir, 28, 10152–10163. https://doi.org/10.1021/la300332x DOI: https://doi.org/10.1021/la300332x
Stranik O., Nooney R., McDonagh C., MacCraith B.D. (2007) Optimization of nanoparticle size for plasmonic enhancement of fluorescence. Plasmonics, 2, 15–22. https://doi.org/10.1007/s11468-006-9020-9 DOI: https://doi.org/10.1007/s11468-006-9020-9
Lakowicz J.R., Geddes C.D. (2005) Enhanced lanthanide luminescence using silver nanostructures: Opportunities for a new class of probes with exceptional spectral characteristics. Journal of Fluorescence, 15, 53–59. https://doi.org/10.1007/s10895-005-0213-y DOI: https://doi.org/10.1007/s10895-005-0213-y
Lakowicz J.R., Maliwal B.P., Malicka J., Gryczynski Z., Gryczynski I. (2002) Effects of silver island films on the luminescent intensity and decay times of lanthanide chelates. Journal of Fluorescence, 12, 431–437. https://doi.org/10.1023/A:1021318127519 DOI: https://doi.org/10.1023/A:1021318127519
Lee I.-Y.S., Suzuki H., Ito K., Yasuda K. (2004) Surface-enhanced fluorescence and reverse saturable absorption on silver nanoparticles. Journal of Physical Chemistry B, 108(50), 19368–19372. https://doi.org/10.1021/jp0471554 DOI: https://doi.org/10.1021/jp0471554
Aslan K., Holly P., Geddes C.D. (2006) Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. Journal of Materials Chemistry, 16, 2846. https://doi.org/10.1039/B604650A DOI: https://doi.org/10.1039/b604650a
Downloads
Жарияланды
How to Cite
Журналдың саны
Бөлім
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.