FORMATION OF MAGNETIC PROPERTIES OF FERRITES DURING RADIATION-THERMAL SINTERING

FORMATION OF MAGNETIC PROPERTIES OF FERRITES DURING RADIATION-THERMAL SINTERING

Authors

DOI:

https://doi.org/10.31489/2020No2/6-10

Keywords:

effects of radiation, ferrites, magnetic properties, microstructure, sintering, hysteresis loop, coercive force, pore volume

Abstract

"The results of a comparative analysis of the laws governing the formation of ferrite hysteresis loop parameters sintered in thermal and radiation-thermal conditions were shown. The influence of radiation exposure on the interconversion of microstructure defects and their content in ferrites, depending on the duration and temperature of treatment, was established. Also, it was shown that recrystallization grain growth under irradiation conditions is ahead of grain growth during thermal heating. The observed radiation effects were associated with the effect of radiation on the microstructure. The magnetic parameters are uniquely determined by the compaction of the sample. "

References

"1 Letyuk L.M., Nifontov V.A., Babich E.A., Gorelik S.S. Effect of low-melting additives on the formation of the microstructure and the properties of ferrites with a rectangular hysteresis loop. Izv. Akad. Nauk Neorg. Mater. 1976, Vol.12, pp. 2023 – 2026.

Zhuravlev G.I., Golubkov L.A., Strakhova T.A. Basic types of microstructure of ferrites and means of obtaining them. Soviet Powder Metallurgy and Metal Ceramics. 1990, Vol.29, pp. 478 – 480.

Dmitriev M.V., Letyuk L.M., Shipko M.N. Study of oxygen diffusion in the surface layers of Mn-Zn ferrites. Technical physics. 1982, Vol.27, pp. 338 – 339.

Letyuk L.M. Recrystallization of ferrites and its effect on the processes of microstructure formation in ferrospinels. Soviet Powder Metallurgy and Metal Ceramics. 1980, Vol.19, No.5, pp. 359 – 364.

Zinovik M.A., Zinovik E.V. Ferrites with rectangular and square hysteresis loops. Powder Metallurgy and Metal Ceramics. 2005, Vol.44, p. 66 – 74.

Letyuk L.M., et al. Special features of the formation of the microstructure of ferrites sintered in the presence of a liquid phase. Izv.Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya. 1979, Vol.11, pp. 124 – 127.

Micheli A.L. Preparation of lithium ferrites by coprecipitation. IEEE Transactions on Magnetics. 1970, Vol.6, pp. 606 – 608.

Bronshteyn I.M., Dyubua B.Ch., Karasik B.S., Khinich I.I. Secondary electron emission of a platinum-barium alloy made by evaporation. Radio Eng. Electron Phys. 1974, Vol.19, pp. 108 – 111.

Minin V.M. Effect of sintering conditions on the microstructure and electromagnetic properties of Li-Mg-Mn ferrite memory elements. Soviet Powder Metallurgy and Metal Ceramics. 1982, Vol.21, pp. 698 – 701.

Zahir R., Chowdhury F.-U.-Z., Uddin M.M., et al. Structural, magnetic and electrical characterization of Cd-substituted Mg ferrites synthesized by double sintering technique. J. Magn. Magn. Mater. 2016, Vol. 410, pp. 55 – 62.

Manjura Hoque S., Abdul Hakim M., Mamun Al, et al. Study of the bulk magnetic and electrical properties of MgFe2O4 synthesized by chemical method. Materials Sciences and Applications. 2011, Vol.2, pp. 1564 – 1569.

Hu J., Yan M., Luo W., Wu J.M. Effects of microstructure on the temperature dependence of relative initial permeability of NiCuZn ferrites. Physica B. 2007, Vol.400, pp. 119 – 123.

Surzhikov A.P., Pritulov A.M., Lysenko E.N., et al. Calorimetric investigation of radiation-thermal synthesized lithium pentaferrite. Journal of Thermal Analysis and Calorimetry. 2010, Vol. 101, No. 1, рр. 11-13.

Yurov V.M., Baltabekov A.S., Laurinas V.C., Guchenko S.A. Dimensional effects and surface energy of ferroelectric crystals. Eurasian Physical Technical Journal. 2019, Vol.16, No.1, pp. 18 – 23.

Surzhikov A.P., Frangulyan T.S., Ghyngazov S.A., et al. Рysics of magnetic phenomena: Investigation of electroconductivity of lithium pentaferrite. Russian Physics Journal. 2006, Vol. 49, No. 5, рр. 506-510.

El-Shobaky G.A., Ibrahim A.A. Solid-solid interactions between ferric oxide and lithium carbonate and the thermal stability of the lithium ferrites produced. Thermochim. Acta. 1987, Vol.118, pp. 151 – 158.

Salimov R.A., Cherepkov V.G., Golubenko J.I., et al. D.C. high power electron accelerators of ELV-series: status, development, applications. J. Radiation Phys. Chem. 2000, Vol.57, pp. 661 – 665.

Cleland M.R., Parks L.A. Medium and high-energy electron beam radiation processing equipment for commercial applications. Nucl. Instr. Meth. B. 2003, Vol.208, pp. 74 – 89.

Mehnert R. Review of industrial applications of electron accelerators. Nucl.Instr.Meth. 1996, Vol.113, pp.81-87.

Neronov V.A., Voronin A.P., Tatarintseva M.I., Melekhova T.E., Auslender V.L. Sintering under a high-power electron beam. J. Less-Common Metals. 1986, Vol.117, pp. 391 – 394.

Surzhikov A.P., Peshev V.V., Pritulov A.M., Gyngazov S.A. Grain-boundary diffusion of oxygen in polycrystalline ferrites. Russian Physics Journal. 1999, Vol. 42, No. 5, рр. 490-495.

Boldyrev V.V., Voronin A.P., Gribkov O.S., Tkachenko E.V., Karagedov G.R., Yakobson B.I., Auslender V.L. Radiation-thermal synthesis. Current achievement and outlook. J. Solid State Ion. 1989, Vol.36, pp. 1 – 6.

Surzhikov A.P., Lysenko E.N., Malyshev A.V., et al. Study of the Radio-Wave Absorbing Properties of a Lithium-Zinc Ferrite Based Composite. Russian Physics Journal. 2014, Vol. 57, No. 5, рр. 621-626.

Surzhikov A.P., et al. Structural, electromagnetic, and dielectric properties of lithium-zinc ferrite ceramics sintered by pulsed electron beam heating. Ceramics International. 2017, Vol. 43, No. 13, рр. 9778-9782.

Smith J., Wijn H.P.J. Ferrites: Physical properties of ferromagnetic oxides in relation to their technical application. 1959, Eindhoven, Phillips Technical Library, 233p.

Globus A. Influence des dimensions des parois la permeability. C. R. Acad. Sci. 1962, Vol.255, pp. 1709 – 1711. [in French]

Globus A., Guyot M. Wall displacement and bulging in magnetization mechanisms of the hysteresis loop. Phys. Status Solidi В. 1972, Vol.52, pp. 427 – 431.

Globus A. Some physical consideration about the domain wall sine. Theory of magnetization mechanisms, J.Phys. (France). 1977, Vol.38, pp. 1 – 15.

Kersten M. Zur wirkung der versetzungen auf die anfangspermeabilität von nickel im rekristallisierten und im plastisch verformten. Zustand Annalen der Physik. 1957, Vol.20, No.1-6, pp. 337 – 344. [in German]

Kersten M. Reversible und irreversible magnetisierun-gsanderungerlangs der hystereschleife, Z. Angew. Phys. 1955, Vol.7, pp. 397 – 407. [in German]

Neel L. Energie magnetocrictalline d’ur macrocristal subdivise on crystallites guadretigues, Compt. Rend. Acad. Sci. 1963, Vol.257, pp. 2917 – 2921.

Neel L. Defaults ponetuels dansles solides ferromagnetiques et ordre directional. J. Phys. (France). 1963, Vol.24, pp. 513 – 516.

"

Downloads

How to Cite

Stary, O., Malyshev, A., Lysenko, E., & Petrova, A. (2020). FORMATION OF MAGNETIC PROPERTIES OF FERRITES DURING RADIATION-THERMAL SINTERING. Eurasian Physical Technical Journal, 17(2(34), 6–10. https://doi.org/10.31489/2020No2/6-10

Issue

Section

Materials science

Most read articles by the same author(s)

Loading...