Исследование оптических и электрических свойств пленок оксинитрида титана.
DOI:
https://doi.org/10.31489/2025N4/24-30Ключевые слова:
оксинитрид титана, тонкие пленки, магнетронное напыление, спектр поглощения, электрическое сопротивлениеАннотация
В данной работе были получены пленки оксинитрида титана на поверхности стеклянных и кремниевых подложек методом магнетронного напыления в смеси газов аргон-кислород-азот. Толщина полученных пленок, скорость их осаждения и морфология поверхности были оценены в зависимости от типа подложки. Были изучены оптические и электрические свойства пленок, полученных на поверхности стекла. Сравнение оптических данных с литературными показало образование аморфных пленок с составом, близким к стехиометрическому составу TiO1.27N0.49. Результаты показали, что полученные свойства соответствуют литературным данным, что открывает новые перспективы для использования полученных пленок оксинитрида титана в качестве активного элемента мемристоров, а также в других важных областях современного материаловедения.
Библиографические ссылки
Song M.-K., Kang J.-H., Zhang X., Ji W., Ascoli A., Messaris I., Demirkol A.S., Dong B., Aggarwal S., Wan W., Hong S.-M., Cardwell S.G., Boybat I., Seo J.-S., Lee J.-S., Lanza M., Yeon H., Onen M., Li J., Yildiz B., del Alamo J.A., Kim S., Choi S., Milano G., Ricciardi C., Alff L., Chai Y., Wang Z., Bhaskaran H., Hersam M.C., Strukov D., Wong H.-S.P., Valov I., Gao B., Wu H., Tetzlaff R., Sebastian A., Lu W., Chua L., Yang J.J., Kim J. (2023) Recent advances and future prospects for memristive materials, devices, and systems. ACS Nano, 17(13), 11994–12039. https://doi.org/10.1021/acsnano.3c03505 DOI: https://doi.org/10.1021/acsnano.3c03505
Xu W., Wang J., Yan X. (2021) Advances in memristor-based neural networks. Front. Nanotech., 3, 645995(1–14). https://doi.org/10.3389/fnano.2021.645995 DOI: https://doi.org/10.3389/fnano.2021.645995
Aguirre F., Sebastian A., Le Gallo M. (2024) Hardware implementation of memristor-based artificial neural networks. Nature Commun., 15(1), 1974. https://doi.org/10.1038/s41467-024-45670-9 DOI: https://doi.org/10.1038/s41467-024-45670-9
Strukov D.B., Snider G.S., Stewart D.R., Williams R.S. (2008) The missing memristor found. Nature, 453, 80–83. https://doi.org/10.1038/nature06932 DOI: https://doi.org/10.1038/nature06932
Zimmers A., Aigouy L., Mortier M., Sharoni A., Wang S., West K.G., Ramirez J.G., Schuller I.K. (2013) Role of thermal heating on the voltage induced insulator-metal transition in VO2. Phys. Rev. Lett., 110, 056601. https://doi.org/10.1103/PhysRevLett.110.056601 DOI: https://doi.org/10.1103/PhysRevLett.110.056601
Zhang H., Liu L.F., Gao B., Qiu Y.J., Liu X.Y., Lu J., Han R.Q., Kang J.F., Yu B. (2011) Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach. Appl. Phys. Lett., 98(4), 042105. https://doi.org/10.1063/1.3543837 DOI: https://doi.org/10.1063/1.3543837
Kim S., Choi Sh.H., Lu W. (2013) Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano, 8(3), 2369–2376. https://doi.org/10.1021/nn405827t DOI: https://doi.org/10.1021/nn405827t
Ryndin E., Andreeva N., Luchinin V. (2022) Compact model for bipolar and multilevel resistive switching in metal-oxide memristors. Micromachines, 13(1), 98. https://doi.org/10.3390/mi13010098 DOI: https://doi.org/10.3390/mi13010098
Ju D., Kim S. (2024) Volatile tin oxide memristor for neuromorphic computing. iScience, 27(8), 110479(1–13). https://doi.org/10.1016/j.isci.2024.110479 DOI: https://doi.org/10.1016/j.isci.2024.110479
Zhu Y.-L., Xue K.-H., Cheng X.-M., Qiao Ch., Yuan J.-H., Li L.-H., Miao X.-Sh. (2021) Uniform and robust TiN/HfO2/Pt memristor through interfacial Al-doping engineering. Appl. Surf. Sci., 550, 149274. https://doi.org/10.1016/j.apsusc.2021.149274 DOI: https://doi.org/10.1016/j.apsusc.2021.149274
Shih Y.-Ch., Wang T.-H., Huang J.-Sh. (2016) Roles of oxygen and nitrogen in control of nonlinear resistive behaviors via filamentary and homogeneous switching in an oxynitride thin film memristor. RSC Adv., 6(66), 61221–61227. https://doi.org/10.1039/c6ra12408a DOI: https://doi.org/10.1039/C6RA12408A
Urazbekov A.E., Troyan P.E., Sakharov Yu.V. (2024) Development of a method for obtaining copper-doped titanium dioxide for the creation of memristive memory elements. Polzunov Bull., 1, 229–233. https://doi.org/10.25712/ASTU.2072-8921.2024.01.029 DOI: https://doi.org/10.25712/ASTU.2072-8921.2024.01.029
Leng Y.X., Wang Z.H., Huang N. (2011) Structure and Properties of Ti-O-N Films Synthesized by Reactive Magnetic Sputtering. Physics Procedia, 18, 40–45. https://doi.org/10.1016/j.phpro.2011.06.054 DOI: https://doi.org/10.1016/j.phpro.2011.06.054
Mucha N.R., Som J., Shaji S., Fialkova S., Apte P.R., Balasubramanian B., Shield J.E., Anderson M., Kumar D. (2020) Electrical and optical properties of titanium oxynitride thin films. J. Mater. Sci., 55(12), 5123–5134. https://doi.org/10.1007/s10853-019-04278-x DOI: https://doi.org/10.1007/s10853-019-04278-x
Naik G.V., Kim J., Boltasseva A. (2011) Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express, 1(6), 1090–1099. https://doi.org/10.1364/OME.1.001090 DOI: https://doi.org/10.1364/OME.1.001090
Ali Sh., Magnusson R., Pshyk O., Birch J., Eklund P., le Febvrier A. (2023) Effect of O/N content on the phase, morphology, and optical properties of titanium oxynitride thin films. J. Mater. Sci., 58, 10975–10985. https://doi.org/10.1007/s10853-023-08717-8 DOI: https://doi.org/10.1007/s10853-023-08717-8
Jia L.W., Lu H.P., Ran Y.J., Zhao S.J., Liu H.N., Li Y.L., Jiang Z.T., Wang Z. (2019) Structural and dielectric properties of ion beam deposited titanium oxynitride thin films. J. Mater. Sci., 54, 1452–1461. https://doi.org/10.1007/s10853-018-2923-y DOI: https://doi.org/10.1007/s10853-018-2923-y
Fabreguette F., Imhoff L., Maglione M., Domenichini B., Marco de Lucas M.C., Sibillot P., Bourgeois S., Sacilotti M. (2010) Correlation between the electrical properties and morphology of low-pressure MOCVD titanium oxynitride thin films grown at various temperatures. Chem. Vap. Deposition, 6(3), 109–114. https://doi.org/10.1002/(SICI)1521-3862(200006)6:3%3C109::AID-CVDE109%3E3.0.CO;2-4 DOI: https://doi.org/10.1002/(SICI)1521-3862(200006)6:3<109::AID-CVDE109>3.0.CO;2-4
Guchenko S.A. (2012) Production, structure, and properties of multiphase ion-plasma coatings. Bull. Karaganda Univ. Ser.: Phys., 4(68), 12–25. Available at: https://phs.buketov.edu.kz/apart/srch/2012_physics_4_68_2012.pdf
Baikenov M.I., Seldyugaev O.B., Guchenko S.A., Afanasyev D.A. (2024) Reason of pitting corrosion of martensitic steel in sea water. Euras. Phys. Tech. J., 21(1), 38–48. https://doi.org/10.31489/2024No1/38-48 DOI: https://doi.org/10.31489/2024No1/38-48
Kiseleva E.S. (2016) Physico-mechanical properties and structure of titanium dioxide and oxynitride films deposited by reactive magnetron sputtering. Abstract of diss., Tomsk. [in Russian] Available at: https://portal.tpu.ru/portal/pls/portal/!app_ds.ds_anketa_bknd.download_doc?fileid=3437
Dultsev F.N., Svitasheva S.N., Nastaushev Yu.V., Aseev A.L. (2011) Ellipsometric investigation of the mechanism of the formation of titanium oxynitride nanolayers. Thin Solid Films, 519(19), 6344–6348. https://doi.org/10.1016/j.tsf.2011.04.034 DOI: https://doi.org/10.1016/j.tsf.2011.04.034
Mergel D., Buschendorf D., Eggert S., Grammes R., Samset B. (2000) Density and refractive index of TiO2 films prepared by reactive evaporation. Thin Solid Films, 371(1–2), 218–224. https://doi.org/10.1016/S0040-6090(00)01015-4 DOI: https://doi.org/10.1016/S0040-6090(00)01015-4
El-Hossary F.M., Negm N.Z., Abd El-Rahman A.M., Raaif M., Abd Elmula A.A. (2015) Properties of titanium oxynitride prepared by RF plasma. Advances in Chemical Engineering and Science, 5, 1–14. http://dx.doi.org/10.4236/aces.2015.51001 DOI: https://doi.org/10.4236/aces.2015.51001
Pavlov L.P. (1987) Methods for measuring parameters of semiconductor materials. Moscow: Vysshaya Shkola. 239 p. [in Russian] Available at: https://www.studmed.ru/pavlov-lp-metody-izmereniya-parametrov-poluprovodnikovyh-materialov_2b8fe54b8df.html
Yang X.G., Li C., Yang B.J., Wang W., Qian Y.T. (2004) Optical properties of titanium oxynitride nanocrystals synthesized via a thermal liquid-solid metathesis reaction. Chem. Phys. Lett., 383(5–6), 502–506. https://doi.org/10.1016/j.cplett.2003.11.037 DOI: https://doi.org/10.1016/j.cplett.2003.11.037
Ievlev V.M., Kushchev S.B., Latyshev A.N., Leonova L.Yu., Ovchinnikov O.V., Smirnov M.S., Popova E.V., Kostyuchenko A.V., Soldatenko S.A. (2014) Absorption spectra of TiO2 thin films synthesized by the reactive radio-frequency magnetron sputtering of titanium. Semiconductors, 48(7), 848–858. https://doi.org/10.1134/S1063782614070094 DOI: https://doi.org/10.1134/S1063782614070094
Erofeev E.V., Fedin I.V., Kazimirov A.I. (2015) Study of electrophysical parameters of titanium nitride thin films obtained by magnetron sputtering. Bull. SibSUTIS, 3, 29–34. Available at: https://vestnik.sibsutis.ru/jour/article/view/506
Chris-Okoro I., Cherono Sh., Akande W., Nalawade S. (2025) Optical and plasmonic properties of high-electron-density epitaxial and oxidative controlled titanium nitride thin films. J. Phys. Chem. C, 129(7), 3762–3774. https://doi.org/10.1021/acs.jpcc.4c06969 DOI: https://doi.org/10.1021/acs.jpcc.4c06969
Yildiz A., Lisesivdin S.B., Kasap M., Mardare D. (2008) Electrical properties of TiO2 thin films. J. Non-Cryst. Solids, 354, 4944–4947. https://doi.org/10.1016/j.jnoncrysol.2008.07.009 DOI: https://doi.org/10.1016/j.jnoncrysol.2008.07.009













