STUDY OF THE EFFECT OF THE FORMATION OF TWO-PHASE CERAMICS BASED ON NEODYMIUM ZIRCONATE DUE TO DOPING WITH MGO AND Y2O5 ON THE STABILITY OF STRENGTH AND THERMOPHYSICAL PARAMETERS UNDER IRRADIATION
DOI:
https://doi.org/10.31489/2024No2/5-13Keywords:
neodymium zirconate, doping, increasing stability, radiation defects, hardening, thermophysical parametersAbstract
The work presents the study results of the determination of the resistance of neodymium zirconate doped with MgO and Y2O5 to radiation damage stemming from irradiation with heavy ions akin to nuclear fuel fission fragments. The attraction towards this type of ceramics stems from its potential to raise the operational temperatures within the core of next-generation nuclear reactors. This is owed to its superior thermal conductivity when compared to zirconium dioxide, coupled with the heightened strength parameters that signify the ceramics' resistance against external factors. The main results of this study are to determine the influence of the formation of substitution or interstitial phases when adding magnesium and yttrium oxides to the composition, on increasing the stability of the strength and thermophysical parameters of neodymium zirconate to the radiation defects accumulation in the damaged surface layer. During the studies, it was found that the formation of impurity phases in the form of MgO inclusions (when it is added to the composition) and a substitution phase of the Y2Zr2O7 type (with the addition of Y2O5) results in an elevation in the hardness and crack resistance stability of neodymium zirconate ceramics, which indicates the positive effect of doping linked to the formation of additional interphase boundaries that prevent strain embrittlement of the damaged layer under high-dose irradiation. During determination of the thermophysical parameters of the studied neodymium zirconate ceramics, it was observed that the formation of interphase boundaries during doping not only enhances thermal conductivity but also mitigates the decline in the thermal conductivity coefficient during irradiation for two-phase ceramics in comparison with undoped neodymium zirconate ceramics.
References
Davies A., Simmons M. D. (2021) Demand for ‘advantaged’hydrocarbons during the 21st century energy transition. Energy Reports. 7, 4483-4497. DOI: 10.1016/j.egyr.2021.07.013. DOI: https://doi.org/10.1016/j.egyr.2021.07.013
Stančin H., Mikulčić H., Wang X., Duić N. (2020) A review on alternative fuels in future energy system. Renewable and sustainable energy reviews. 128, 09927. DOI: 10.1016/j.rser.2020.109927. DOI: https://doi.org/10.1016/j.rser.2020.109927
Lorusso P., Bassini S., Del Nevo A., Di Piazza I., Giannetti F., Tarantino M., Utili M. (2018) GEN-IV LFR development: status & perspectives. Progress in Nuclear Energy. 105, 318-331. DOI: 10.1016/j.pnucene. 2018.02.005. DOI: https://doi.org/10.1016/j.pnucene.2018.02.005
Yan X.L. (2023). Very High Temperature Reactor. In Handbook of Generation IV Nuclear Reactors. Woodhead Publishing. 133-165. DOI:10.1016/B978-0-12-820588-4.00009-8. DOI: https://doi.org/10.1016/B978-0-12-820588-4.00009-8
Restani R., Martin M., Kivel N., Gavillet D. (2009) Analytical investigations of irradiated inert matrix fuel. Journal of nuclear materials, 385(2), 435-442. DOI: 10.1016/j.jnucmat.2008.12.030.
Lombardi C., Luzzi L., Padovani E., Vettraino F. (2008) Thoria and inert matrix fuels for a sustainable nuclear power. Progress in Nuclear Energy. 50 (8), 944-953. DOI: 10.1016/j.pnucene. 2008.03.006. DOI: https://doi.org/10.1016/j.pnucene.2008.03.006
Kelly J.E. (2014) Generation IV International Forum: A decade of progress through international cooperation. Progress in Nuclear Energy. 77, 240-246. DOI: 10.1016/j.pnucene.2014.02.010. DOI: https://doi.org/10.1016/j.pnucene.2014.02.010
Zohuri B. (2020) Generation IV nuclear reactors. Nuclear reactor technology development and utilization. Woodhead Publishing. 213-246. DOI: 10.1016/B978-0-12-818483-7.00006-8. DOI: https://doi.org/10.1016/B978-0-12-818483-7.00006-8
Hellwig C., Streit M., Blair P., Tverberg T., Klaassen F.C., Schram R.P.C., Yamashita T. (2006) Inert matrix fuel behaviour in test irradiations. Journal of nuclear materials. 352 (1-3), 291-299. DOI:10.1016/j.jnucmat. 2006.02.065. DOI: https://doi.org/10.1016/j.jnucmat.2006.02.065
Restani R., Martin M., Kivel N., Gavillet D. (2009) Analytical investigations of irradiated inert matrix fuel. Journal of nuclear materials. 385 (2), 435-442. DOI:10.1016/j.jnucmat. 2008.12.030. DOI: https://doi.org/10.1016/j.jnucmat.2008.12.030
Frieß F., Liebert W. (2022) Inert-matrix fuel for transmutation: Selected mid-and long-term effects on reprocessing, fuel fabrication and inventory sent to final disposal. Progress in Nuclear Energy. 145, 104106. DOI:10.1016/j.pnucene.2021.104106. DOI: https://doi.org/10.1016/j.pnucene.2021.104106
Ledergerber G., Degueldre C., Heimgartner P., Pouchon M. A., Kasemeyer U. (2001) Inert matrix fuel for the utilisation of plutonium. Progress in Nuclear Energy. 38 (3-4), 301-308. DOI:10.1016/S0149-1970(00)00122-0. DOI: https://doi.org/10.1016/S0149-1970(00)00122-0
Nuritdinov I., Tashmetov М.Yu, Khodzhaev U.O., Umarov S.Kh., Khallokov F.K. (2024). Influence of electron irradiation on the crystal structure, surface microrelief and bandganp width of the triple crystals of iron doped monoselinide of thallium and indium. Eurasian Physical Technical Journal, 20(4(46), 23–32. DOI:10.31489/2023No4/23-32. DOI: https://doi.org/10.31489/2023No4/23-32
Degueldre C., Pouchon M., Döbeli M., Sickafus K., Hojou K., Ledergerber G., Abolhassani-Dadras S.(2001) Behaviour of implanted xenon in yttria-stabilised zirconia as inert matrix of a nuclear fuel. Journal of nuclear materials. 289 (1-2), 115-121. DOI:10.1016/S0022-3115(00)00690-5. DOI: https://doi.org/10.1016/S0022-3115(00)00690-5
Arima T., Yamasaki S., Torikai S., Idemitsu K., Inagaki Y., Degueldre C. (2005) Molecular dynamics simulation of zirconia-based inert matrix fuel. Journal of alloys and compounds. 398 (1-2), 296-303. DOI:10.1016/j.jallcom.2005.02.041. DOI: https://doi.org/10.1016/j.jallcom.2005.02.041
Pan W., Xu Q., Qi L.H., Wang J.D., Miao H.Z., Mori K., Torigoe T. (2004) Novel low thermal conductivity ceramic materials for thermal barrier coatings. Key Engineering Materials. 280, 1497-1500. DOI:10.4028/www.scientific.net/KEM.280-283.1497. DOI: https://doi.org/10.4028/www.scientific.net/KEM.280-283.1497
Popov V.V., Menushenkov A.P., Ivanov A.A., Gaynanov B.R., Yastrebtsev A.A., d’Acapito F., Ponkratov K.V. (2019) Comparative analysis of long-and short-range structures features in titanates Ln2Ti2O7 and zirconates Ln2Zr2O7 (Ln= Gd, Tb, Dy) upon the crystallization process. Journal of Physics and Chemistry of Solids. 130, 144-153. DOI:10.1016/j.jpcs.2019.02.019. DOI: https://doi.org/10.1016/j.jpcs.2019.02.019
Shlyakhtina A.V., Belov D.A., Knotko A.V., Kolbanev I.V., Streletskii A.N., Karyagina O.K., Shcherbakova L.G. (2014) Oxygen interstitial and vacancy conduction in symmetric Ln 2±x Zr 2±x O 7±x/2 (Ln= Nd, Sm) solid solutions. Inorganic Materials. 50, 1035-1049. DOI:10.1134/S002016851410015X. DOI: https://doi.org/10.1134/S002016851410015X
Moudir D., Kamel Z., Ait-Amar H. (2013) Synthesis and characterization of a neodymium zirconate pyrochlore doped with ytterbium:(YbxNd1-x) 2Zr2O7 (x=0.1, 0.25 and 0.4). Journal of Materials Science and Engineering. B. 3 (1B), 1-10. DOI: 55b84d5aac700. DOI: https://doi.org/10.17265/2161-6221/2013.01.001
Park S., Tracy C.L., Zhang F., Park C., Trautmann C., Tkachev S.N., Ewing R.C. (2018) Radiation-induced disorder in compressed lanthanide zirconates. Physical Chemistry Chemical Physics. 20(9), 6187-6197. DOI:10.1039/C7CP08664D. DOI: https://doi.org/10.1039/C7CP08664D
Weber W.J., Duffy D.M., Thomé L., Zhang Y. (2015) The role of electronic energy loss in ion beam modification of materials. Current Opinion in Solid State and Materials Science. 19(1), 1-11. DOI:10.1016/j.cossms.2014.09.003. DOI: https://doi.org/10.1016/j.cossms.2014.09.003
Zhang Y., Egami T., Weber W.J. (2019) Dissipation of radiation energy in concentrated solid-solution alloys: Unique defect properties and microstructural evolution. Mrs Bulletin. 44 (10), 798-811. DOI:10.1557/mrs.2019.233. DOI: https://doi.org/10.1557/mrs.2019.233
Van Vuuren A.J., Ibrayeva A.D., O'Connell J.H., Skuratov V.A., Mutali A., Zdorovets M.V. (2020) Latent ion tracks in amorphous and radiation amorphized silicon nitride. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 473, 16-23. DOI:10.1016/j.nimb.2020.04.009. DOI: https://doi.org/10.1016/j.nimb.2020.04.009
Van Vuuren A.J., Ibrayeva A., Rymzhanov R.A., Zhalmagambetova A., O’connell J.H., Skuratov V.A., Zdorovets M. (2020) Latent tracks of swift Bi ions in Si3N4. Materials Research Express. 7(2), 025512. DOI:10.1088/2053-1591/ab72d3. DOI: https://doi.org/10.1088/2053-1591/ab72d3
Downloads
Received
Revised
Accepted
Published online
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.





