Термоэлектрлік бақылау кезіндегі бақыланатын үлгідегі электродтардың жанасу кедергісін бақылау
DOI:
https://doi.org/10.31489/2024No2/38-48Кілт сөздер:
термоЭҚК, ыстық электрод, суық электрод, жанасу кедергісі, ток генераторы, сүзгі, өлшеуіш резисторыАңдатпа
Мақалада электродтардың жанасу кедергісінің бақылау нәтижесіне әсеріне талдау жүргізілді. Өлшеуіш резисторының шамасы артқан кезде сынақ үлгісімен электродтардың жанасу кедергісінің рұқсат етілген мәні жоғарылайтыны көрсетілген. Жанасу кедергісін басқарудың жанама әдісі ұсынылған, бұл әдіс жоғары жиілікті тұрақты токты жанасу кедергісі арқылы өткізуден және осы кедергідегі кернеуді өлшеуден тұрады. Өлшеуіш резисторындағы салыстырмалы кернеудің контактінің жалпы кедергісіне тәуелділігі тұрғызылды. Жанасу кедергісінің рұқсат етілген мәні есептелген, термоЭҚК-нің өлшенетін мәні ақиқат мәннен 10% - дан аспайды. Ұсынылған әдіс термоЭҚКбақылау процесінде жанасу кедергісін тікелей өлшеуге мүмкіндік береді.
Дәйексөздер
Carreon H. (2002) Thermoelectric Nondestructive Evaluation of Residual Stress in Shot-Peened Metals. Research in Nondestructive Evaluation. 14(2), 59 – 80. DOI: 10.1080/09349840209409705. DOI: https://doi.org/10.1007/s00164-002-0001-x
Nagy P.B. (2010) Non-destructive methods for materials' state awareness monitoring. Insight: Non-Destructive Testing and Condition Monitoring. 52(2), 61 – 71. DOI: 10.1784/insi.2010.52.2.61. DOI: https://doi.org/10.1784/insi.2010.52.2.61
Li J.F., Liu W.S., Zhao L.D., Zhou M. (2010) High-performance nanostructured thermoelectric materials. Npg Asia Mater. 2(4), 152 – 158. DOI: 10.1038/asiamat.2010.138. DOI: https://doi.org/10.1038/asiamat.2010.138
Kikuchi M. (2010) Dental alloy sorting by the thermoelectric method. European Journal of Dentistry. 4(1), 66 – 70. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798792/
Stuart C. (1987) Thermoelectric Differences Used for Metal Sorting. Journal of Testing and Evaluation. 15(4), 224 – 230. DOI: 10.1520/JTE11013J. ISSN 0090-3973. DOI: https://doi.org/10.1520/JTE11013J
Dragunov V.K., Goncharov A.L. (2019) New approaches to the rational manufacturing of combined constructions by EBW. Proceeding of the IOP Conference Series: Materials Science and Engineering. 681, 012010. DOI:10.1088/1757-899X/681/1/012010. DOI: https://doi.org/10.1088/1757-899X/681/1/012010
Goncharov A., Sliva A., Kharitonov I., Chulkova A., Terentyev E. (2020). Research of thermoelectric effects and their influence on electron beam in the process of welding of dissimilar steels. Proceeding of the IOP Conference Series: Materials Science and Engineering. 759(1), 012008. DOI: 10.1088/1757-899X/759/1/012008 DOI: https://doi.org/10.1088/1757-899X/759/1/012008
Kharitonov I.A., Rodyakina R.V., Goncharov A.L. (2020) Investigation of magnetic properties of various structural classes steels in weak magnetic fields characteristic for generation of thermoelectric currents in electron beam welding. Solid State Phenomena. 299, 1201–1207. DOI: 10.4028/www.scientific.net/SSP.299.1201. DOI: https://doi.org/10.4028/www.scientific.net/SSP.299.1201
Soldatov A.I., Soldatov A.A., Sorokin P.V., Abouellail A.A., Obach I.I., Bortalevich V.Y., Shinyakov Y.A., Sukhorukov M.P. (2017) An experimental setup for studying electric characteristics of thermocouples. SIBCON 2017 – Proceedings. 79985342017. DOI: 10.1109/SIBCON.2017.7998534. DOI: https://doi.org/10.1109/SIBCON.2017.7998534
Carreon H., Medina A. (2007) Nondestructive characterization of the level of plastic deformation by thermoelectric power measurements in cold-rolled Ti–6Al–4V samples. Nondestructive Testing and Evaluation. 22(4), 299-311. DOI: 10.1080/10589750701546960 DOI: https://doi.org/10.1080/10589750701546960
Carreon H. (2013) Detection of fretting damage in aerospace materials by thermoelectric means. Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security. 8694. DOI: 10.1117/12.2009448. DOI: https://doi.org/10.1117/12.2009448
Lakshminarayan B., Carreon H., Nagy P. (2003) Monitoring of the Level of Residual Stress in Surface Treated Specimens by a Noncontacting Thermoelectric Technique. AIP Conference Procceding. 657, 1523-1530. DOI:10.1063/1.1570311. DOI: https://doi.org/10.1063/1.1570311
Milićević I., Popović M., Dučić N., Slavković R., Dragićević S., Maričić A. (2018) Experimental Identification of the Degree of Deformation of a Wire Subjected to Bending. Science of Sintering. 50(2), 183-191. DOI:10.2298/SOS1802183M. DOI: https://doi.org/10.2298/SOS1802183M
Soldatov A.I., Soldatov A.A., Sorokin P.V., Abouellail A.A., Kostina M.A. (2018) Thermoelectric method of plastic deformation detection. Materials Science Forum. 938, 112-118. DOI: 10.4028/www.scientific.net/MSF.938.112. DOI: https://doi.org/10.4028/www.scientific.net/MSF.938.112
Magalhães A., De Backer J., Bolmsjö G. (2019) Thermal Dissipation Effect on Temperature-controlled Friction Stir Welding. Soldagem & Inspeção. 24(3), 1-9. DOI: 10.1590/0104-9224/si24.28. DOI: https://doi.org/10.1590/0104-9224/si24.28
Silva Ana C.F., De Backer J., Bolmsjö G. (2015) TWT method for temperature measurement during FSW process. The 4th international conference on scientific and technical advances on friction stir welding & processing. 95-98. Available at: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1290065&dswid=554.
De Backer J., Bolmsjö G., and Christiansson A.-K. (2014) Temperature control of robotic friction stir welding using the thermoelectric effect. The International Journal of Advanced Manufacturing Technology. 70, 375-383. DOI:10.1007/s00170-013-5279-0. DOI: https://doi.org/10.1007/s00170-013-5279-0
Silva Ana C. F., De Backer J., Bolmsjö G. (2015) Cooling rate effect on temperature controlled FSW process. Proceeding of the VII Intern. Conf. “High-Strength Materials: Challenges and Applications”. Available at: https://www.researchgate.net/publication/281450403_Cooling_rate_effect_on_temperature_controlled_FSW_process.
Silva Ana C.F., De Backer J., Bolmsjö G. 2016. Analysis of plunge and dwell parameters of robotic FSW using TWT temperature feedback control. Proceeding of the 11th Intern. Symposium on FSW. Available at: https://www.researchgate.net/publication/303389476_ANALYSIS_OF_PLUNGE_AND_DWELL_PARAMETERS.
Vasiliev I., Soldatov A., Abouellail A., Kostina M.A., Soldatov A.A., Soldatov D., Bortalevich S. (2021) Thermoelectric Quality Control of the Application of Heat-Conducting Compound. Studies in Systems, Decision and Control. 351, 59–68. DOI: 10.1007/978-3-030-68103-6_6. DOI: https://doi.org/10.1007/978-3-030-68103-6_6
Yang Zhou, Donghua Yang, Liangliang Li, Fu Li, and Jing-Feng Li. (2014) Fast Seebeck coefficient measurement based on dynamic method. Review of Scientific Instruments. 85, 054904. DOI: 10.1063/1.4876595. DOI: https://doi.org/10.1063/1.4876595
Uchida K., Ota T., Adachi H., Xiao J., Nonaka T., Kajiwara Y., Bauer G.E.W., Maekawa S., Saitoh E. (2012) Thermal spin pumping and magnon-phonon-mediated spin-Seebeck effect. Journal of Applied Physics. 111(10), 103903. DOI:10.1063/1.4716012. DOI: https://doi.org/10.1063/1.4716012
Uchida K., Takahashi S., Harii K., Ieda J., Koshibae W., Ando K., Maekawa S., Saitoh E. (2008) Observation of the spin Seebeck effect. Nature. 455, 778–781. DOI: 10.1038/nature07321. DOI: https://doi.org/10.1038/nature07321
Lider A.M., Larionov V.V., Syrtanov M.S. (2016) Hydrogen concentration measurements at titanium layers by means of thermo-EMF. Key Engineering Materials. 683, 199 – 202. DOI: 10.4028/www.scientific.net/KEM.683.199. DOI: https://doi.org/10.4028/www.scientific.net/KEM.683.199
Iwanaga S., Toberer E.S., LaLonde A., Snyder G.J. (2011) A high temperature apparatus for measurement of the Seebeck coefficient. Review of Scientific Instruments. 82(6), 063905. DOI: 10.1063/1.3601358. DOI: https://doi.org/10.1063/1.3601358
Sarath Kumar S.R., Kasiviswanathan S. (2008) A hot probe setup for the measurement of the Seebeck coefficient of thin wires and thin films using integral method.Review of Scientific Instruments. 79, 02432,DOI: 10.1063/1.2869039. DOI: https://doi.org/10.1063/1.2869039
Abouellail A.A., Chang J., Soldatov А.I., Soldatov A.A., Kostina M.A., Vasiliev I.M. (2023) Thermoelectric Monitoring Of Thermal Resistance In Electronic Systems. Eurasian Physical Technical Journal. 20(3), 52-61. DOI: 10.31489/2023No3/52-61. DOI: https://doi.org/10.31489/2023No3/52-61
Soldatov A.I., Soldatov A.A., Sorokin P.V., Loginov E.L., Abouellail A.A., Kozhemyak O.A., Bortalevich S.I. (2016) Control system for device «thermotest». International Siberian Conference on Control and Communications (SIBCON-2016). 1-5. DOI: 10.1109/SIBCON.2016.7491869. DOI: https://doi.org/10.1109/SIBCON.2016.7491869
Hu J., Nagy P.B. (1998) On the role of interface imperfections in thermoelectric nondestructive materials characterization. Applied Physics Letters. 73, 467-469. DOI: http://dx.doi.org/10.1063/1.121902. DOI: https://doi.org/10.1063/1.121902
Abouellail A.A., Chang, J., Soldatov, A.I., Soldatov, A.A.,.Kostina, M.A., Bortalevich, S.I., Soldatov, D.A. (2022) Influence of Destabilizing Factors on Results of Thermoelectric Testing. Russian Journal of Nondestructive Testing. 58(7), 607–616. doi.org/10.1134/S1061830922070026. DOI: https://doi.org/10.1134/S1061830922070026
Sergeev A.S., Tikhonova Z.S., Uvarova T.V. (2017) Method for measuring thermo-emf of a "tool-workpiece" natural thermocouple in chip forming machining. MATEC Web of Conferences. 129, 01044. DOI: 10.1051/matecconf/201712901044. DOI: https://doi.org/10.1051/matecconf/201712901044
Abouellail1 A.A., Kostina M.A., Bortalevich S.I., Loginov E.L., Shinyakov Y.A., Sukhorukov M.P. (2018) Mathematical simulation of thermocouple characteristics. Proceeding of the IOP Conference Series: Materials Science and Engineering. 327(2), 022002. DOI: 10.1088/1757-899X/327/2/022002. DOI: https://doi.org/10.1088/1757-899X/327/2/022002
Downloads
Түсті
Өңделді
Қабылданды
Жарияланды
How to Cite
Журналдың саны
Бөлім
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.












