CONFORMATIONAL STRUCTURE OF POLYAMPHOLYTES AND POLYELECTROLYTES ON THE SURFACE OF A LONGITUDINALLY POLARIZED GOLD SPHEROCYLINDER

CONFORMATIONAL STRUCTURE OF POLYAMPHOLYTES AND POLYELECTROLYTES ON THE SURFACE OF A LONGITUDINALLY POLARIZED GOLD SPHEROCYLINDER

Authors

DOI:

https://doi.org/10.31489/2024No3/6-20

Keywords:

gold nanorod, polarized nanoparticle, polyampholyte, polyelectrolyte, conformational structure, molecular dynamics

Abstract

Conformational changes in generally neutral polyampholytic, as well as uniformly charged macrochains, polypeptides adsorbed on the surface of a longitudinally polarized gold spherocylinder—a cylindrical nanorod with spherical ends—were studied. An analytical model of the equilibrium structure of adsorbed macrochains on the surface of a polarized spherocylinder is presented, highlighting the entropy and field factors of the radial-angular distribution of link density. In the course of molecular dynamics simulation, the radial distributions of the density of polypeptide atoms in the central cylindrical part of the nanorod, as well as on its terminal hemispheres, were calculated. In addition, the distributions of the linear density of polypeptide atoms along the axis of the nanorod were calculated. A dumbbell-shaped polyampholyte edge was formed on the surface of the polarized nanorod, dense in the extended central cylindrical part and loose at the ends of the nanorod. There was also a shift of the macromolecular edge from the units of a uniformly charged polypeptide to the oppositely charged end of the nanorod, on which this polyelectrolyte edge swelled.

Author's detail

M.G. Kucherenko

Kucherenko, Michael Gennadievich - Doctor of phys.-math. sciences, Professor, Director of the Center for Laser and Informational Biophysics, Orenburg State University, Orenburg, Russia; Scopus Author ID: 7003581468; ORCID iD: 0000-0001-8821 -2427, clibph@yandex.ru

N.Yu. Kruchinin

Kruchinin, Nikita Yurevich - Doctor of phys.-math. sciences, Associate Professor, Department of radiophysics and electronics, Orenburg State University, Orenburg, Russia; Scopus Author ID: 35170029600; ORCID iD: 0000-0002-7960-3482; kruchinin_56@mail.ru

P.P. Neyasov

Neyasov, Petr P. – Master (Sci.), Head of the Laboratory of Nanostructure Synthesis, Orenburg State University, Orenburg, Russia; Scopus Author ID: 57222337052; ORCID iD: 0000-0002-7133-8741; nejapetr@yandex.ru

References

Lenjani S.V., Mayer M., Wang R., Dong Y., Fery A., Sommer J., Rossner C. (2022) Importance of electrostatic forces in supracolloidal self-assembly of polymer-functionalized gold nanorods. J. Phys. Chem. C., 126, 14017 – 14025. DOI: 10.1021/acs.jpcc.2c04930.

Vedhanayagam M., Andra S., Muthalagu M., Sreeram K.J. (2022) Influence of functionalized gold nanorods on the structure of cytochrome –c: an effective bio-nanoconjugate for biomedical applications. Inorganic Chemistry Communications, 146, 110182. DOI: 10.1016/j.inoche.2022.110182.

Chakraborty K., Biswas A., Mishra S., Mallick A.M., Tripathi A., Jan S., Roy R.S. (2023) Harnessing peptide-functionalized multivalent gold nanorods for promoting enhanced gene silencing and managing breast cancer metastasis. ACS Appl. Bio Mater., 6, 458–472. DOI: 10.1021/acsabm.2c00726.

Dong X., Yu P., Zhao J., Wu Y., Ali M., El-Sayed M.A., Wang J. (2023) Structural Dynamics of (RGD)4PGC peptides in solvated and au nanorod surface-bound forms examined by ultrafast 2d IR Spectroscopy. J. Phys. Chem. C, 127, 3532–3541. DOI: 10.1021/acs.jpcc.2c07830.

Wei W., Bai F., Fan H. (2019) Oriented gold nanorod arrays: self‐assembly and optoelectronic applications. Angewandte Chemie International Edition, 58, 11956–11966. DOI: 10.1002/anie.201902620.

Halder K., Sengupta P., Chaki S., Saha R., Dasgupta S. (2023) Understanding conformational changes in human serum albumin and its interactions with gold nanorods: do flexible regions play a role in corona formation? Langmuir, 39, 1651–1664. DOI: 10.1021/acs.langmuir.2c03145.

Trofymchuk K., Kołątaj K., Glembockyte V., Zhu F., Acuna G.P., Liedl T., Tinnefeld P. (2023) Gold Nanorod DNA Origami Antennas for 3 Orders of Magnitude Fluorescence Enhancement in NIR. ACS Nano, 17, 1327–1334. DOI: 10.1021/acsnano.2c09577.

Han S., Wang J.T., Yavuz E., Zam A., Rouatbi N., Utami R.N., Liam-Or R., Griffiths A., Dickson W., Sosabowski J., Al-Jamal K.T. (2023) Spatiotemporal tracking of gold nanorods after intranasal administration for brain targeting. Journal of Controlled Release, 357, 606-619. DOI: 10.1016/j.jconrel.2023.04.022.

Pal S., Koneru J.K., Andreou C., Rakshit T., Rajasekhar V.K., Wlodarczyk M., Healey J.H., Kircher M.F., Mondal J. (2022) DNA-Functionalized Gold Nanorods for Perioperative Optical Imaging and Photothermal Therapy of Triple-Negative Breast Cancer. ACS Appl. Nano Mater., 5, 9159–9169. DOI: 10.1021/acsanm.2c01502.

Hosseinniya S., Rezayan A.H., Ghasemi F., Malekmohamadi M., Taheri R.A., Hosseini M., Alvandi H. (2023) Fabrication and evaluation of optical nanobiosensor based on localized surface plasmon resonance (LSPR) of gold nanorod for detection of CRP. Analytica Chimica Acta, 1237, 340580. DOI: 10.1016/j.aca.2022.340580.

Chang Y., Wang Q., Xu W., Huang X., Xu X., HanF.Y., Qiao R., Ediriweera G.R., Peng H., Fu C., Liu K., Whittaker A.K. (2022) Low-fouling gold nanorod theranostic agents enabled by a sulfoxide polymer coating. Biomacromolecules, 23, 3866–3874. DOI: 10.1021/acs.biomac.2c00696.

Zhao H., Jiang T., Yi L., Tang L. (2021) DNA sequences-mediated fine-tuning of nanostructures and their plasmonic properties over gold nanorods. Optik, 228, 166137. DOI: 10.1016/j.ijleo.2020.166137.

Li M., Lu D., You R., Shen H., Zhu L., Lin Q., Lu Y. (2022) Surface-enhanced Raman scattering biosensor based on self-assembled gold nanorod arrays for rapid and sensitive detection of tyrosinase. J. Phys. Chem. C, 126, 12651–12659. DOI: 10.1021/acs.jpcc.2c03408.

Kruchinin N.Yu., Kucherenko M.G. (2020) Molecular-Dynamics Simulation of Rearrangements in the Conformational Structure of Polyampholytic Macromolecules on the Surface of a Polarized Metal Nanoparticle. Colloid Journal, 82, 136-143. DOI: 10.1134/S1061933X20020088.

Kruchinin N.Yu., Kucherenko M.G. (2021) Rearrangements in the conformational structure of polyampholytic polypeptides on the surface of a uniformly charged and polarized nanowire: Molecular dynamics simulation. Surfaces and Interfaces, 27, 101517. DOI: 10.1016/j.surfin.2021.101517.

Kucherenko M.G., Kruchinin N.Yu., Neyasov P.P. (2022) Modeling of conformational changes of polyelectrolytes on the surface of a transversely polarized metal nanowire in an external electric field. Eurasian Physical Technical Journal, 19, 19-29. DOI: 10.31489/2022No2/19-29.

Kruchinin N.Yu., Kucherenko M.G. (2021) Molecular dynamics simulation of conformational rearrangements in polyelectrolyte macromolecules on the surface of a charged or polarized prolate spheroidal metal nanoparticle. Colloid Journal, 83, 591-604. DOI:10.1134/S1061933X21050070.

Kruchinin N.Yu., Kucherenko M.G. (2021) Modeling the conformational rearrangement of polyampholytes on the surface of a prolate spheroidal metal nanoparticle in alternating electric field. High Energy Chemistry, 55, 442-453. DOI:10.1134/S0018143921060084.

Kruchinin N.Yu., Kucherenko M.G. (2022) Molecular dynamics simulation of the conformational structure of uniform polypeptides on the surface of a polarized metal prolate nanospheroid with varying pH. Russian Journal of Physical Chemistry A, 96, 624-632. DOI:10.1134/S0036024422030141.

Kruchinin N.Y., Kucherenko M.G. (2022) Conformational changes of polyelectrolyte macromolecules on the surface of charged prolate metal nanospheroid in alternating electric field. Polymer Science Series A, 64, 240–254. DOI:10.1134/S0965545X2203004X.

Kruchinin N.Yu., Kucherenko M.G. (2022) Modeling of electrical induced conformational changes of macromolecules on the surface of metallic nanospheroids. Materials Today: Proceedings, 71, Part 1, 18-30. DOI:10.1016/j.matpr.2022.07.139.

Kruchinin N.Y., Kucherenko M.G. (2023) Rearrangements in the Conformational Structure of Polyelectrolytes on the Surface of a Flattened Metal Nanospheroid in an Alternating Electric Field. Colloid Journal, 85, 44-58. DOI:10.1134/S1061933X22600440.

Landau L.D., Pitaevskii L.P., Lifshitz E.M. (1984), Electrodynamics of Continuous Media, 2nd Edition, Elsevier Ltd., 460.

Grosberg A.Y., Khokhlov A.R. (1994) Statistical Physics of Macromolecules. AIP Press, New York. 347.

Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R.D., Kale L, Schulten K. (2005) Scalable molecular dynamics with NAMD. J Comput Chem., 26, 1781-1802. DOI:10.1002/jcc.20289.

MacKerell A.D. Jr., Bashford D., Bellott M., Dunbrack Jr. R.L., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., Kuczera K., Lau F.T.K., Mattos C., Michnick S., Ngo T., Nguyen D.T., Prodhom B., Reiher III W.E., Roux B., Schlenkrich M., Smith J.C., Stote R., Straub J., Watanabe M., Wiorkiewicz-Kuczera J., Yin D., Karplus M. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins J. Phys. Chem. B.,102, 3586-3616. DOI:10.1021/jp973084f.

Huang, J., Rauscher, S., Nawrocki, G., Ran T., Feig M., de Groot B.L., Grubmüller H., MacKerell Jr. A.D. (2016) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods, 14. 71-73. DOI: 10.1038/nmeth.4067.

Heinz H., Vaia R.A., Farmer B.L., Naik R.R. (2008) Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12−6 and 9−6 Lennard-Jones potentials. J. Phys. Chem. C., 112, 17281-17290. DOI: 10.1021/jp801931d.

Cappabianca R., De Angelis P., Cardellini A., Zhuang Y., Hernandez R. (2022) Assembling biocompatible polymers on gold nanoparticles: toward a rational design of particle shape by molecular dynamics. ACS Omega, 7, 42292-42303. DOI: 10.1021/acsomega.2c05218.

Wei X., Harazinska E., Zhao Y., Zhuang Y., Hernandez R. (2022) Thermal transport through polymer-linked gold nanoparticles. The Journal of Physical Chemistry C., 126, 18511-18519. DOI: 10.1021/acs.jpcc.2c05816.

Chew A.K., Pedersen J.A., Van Lehn R.C. (2022) Predicting the physicochemical properties and biological activities of monolayer-protected gold nanoparticles using simulation-derived descriptors. ACS Nano, 16, 6282-6292. DOI: 10.1021/acsnano.2c00301.

Jia H., Zhang Y., Zhang C., Ouyang M., Du S. (2023) Ligand–ligand-interaction-dominated self-assembly of gold nanoparticles at the oil/water interface: an atomic-scale simulation. The Journal of Physical Chemistry B, 127, 2258-2266. DOI:10.1021/acs.jpcb.2c07937.

Wang X., Ham S., Zhou W., Qiao R. (2023) Adsorption of rhodamine 6G and choline on gold electrodes: a molecular dynamics study. Nanotechnology, 34, 025501. DOI: 10.1088/1361-6528/ac973b.

Darden T., York D., Pedersen L. (1993) Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems J. Chem. Phys., 98, 10089-10092. DOI: 10.1063/1.464397.

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 79, 926-935. DOI:10.1063/1.445869.

Downloads

Received

2024-04-03

Revised

2024-06-26

Accepted

2024-09-06

Published online

2024-09-30

How to Cite

Kucherenko, M., Kruchinin, N., & Neyasov, P. (2024). CONFORMATIONAL STRUCTURE OF POLYAMPHOLYTES AND POLYELECTROLYTES ON THE SURFACE OF A LONGITUDINALLY POLARIZED GOLD SPHEROCYLINDER. Eurasian Physical Technical Journal, 21(3(49), 6–20. https://doi.org/10.31489/2024No3/6-20

Issue

Section

Materials science
Loading...