SYNTHESIS AND CHARACTERIZATION OF HYDROXYAPATITE UNDER INFLUENCE OF ULTRAVIOLET RADIATION AND ULTRASONIC EXPOSURE

SYNTHESIS AND CHARACTERIZATION OF HYDROXYAPATITE UNDER INFLUENCE OF ULTRAVIOLET RADIATION AND ULTRASONIC EXPOSURE

Authors

DOI:

https://doi.org/10.31489/2024No3/54-62

Keywords:

hydroxyapatite, wet precipitation, ultrasound, ultraviolet radiation

Abstract

Hydroxyapatite has a wide range of possible applications in biomedicine, optics and electronics, sensors, catalysis and in environmental decontamination. The present study focused on the synthesis of hydroxyapatite by the wet precipitation method. The influence of drying time on the properties of synthesized material was investigated. The particle size increases from 80 to 200 µm by increasing the drying time from 24 hours to 96 hours. The morphology and properties of hydroxyapatite powders obtained under the action of the ultraviolet radiation and ultrasonic exposure acting together and individually was studied. The obtained samples were analyzed using X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope, Brunauer–Emmett–Teller methods. The results showed that the properties of the obtained hydroxyapatite powders were highly dependent on the synthesis conditions. Ultrasonic treatment at the synthesis stage led to a decrease in the size of the resulting hydroxyapatite particles to 4 µm. The use of ultraviolet radiation at the stabilization stage led to an increase in the content of hydroxyapatite in the reaction products.

Author's detail

A.V. Mostovshchikov

Mostovshchikov, Andrei Vladimirovich – Doctor of Technical Sciences, Associate Professor, Professor, School of Earth Sciences and Engineering, Tomsk Polytechnic University; Professor, Department of Physical Electronics, Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia; Scopus Author ID: 15019762000; ORCID ID: 0000-0001-6401-9243; avmost@tpu.ru

M.E. Grebnev

Grebnev, Mark Ernestovich – Master's Student, School of Nuclear Science & Engineering, Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia; ORCID ID: 0009-0003-0937-5298; mark18091@gmail.com

M.A. Rudmin

Rudmin, Maxim Andreevich – Candidate of Geological and Mineralogical Sciences, Associate Professor, Division for Geology, School of Earth Sciences and Engineering, Tomsk polytechnic university, Tomsk, Russia; Scopus Author ID: 56350797200; ORCID ID: 0000-0002-9004-9929; rudminma@tpu.ru  

O.B. Nazarenko

Nazarenko, Olga Bronislavovna – Doctor of Technical Sciences, Professor, Division of Testing and Diagnostics, NDT School, Tomsk polytechnic university, Tomsk, Russia; Scopus Author ID: 57193908313; ORCID ID: 0000-0003-3245-3584; olganaz@tpu.ru

K.V. Derina

Derina, Ksenia Vladimirovna – Candidate of Technical Sciences, Associate Professor, Division of Chemical Engineering, School of Earth Sciences and Engineering, Tomsk Polytechnic University, Tomsk, Russia; Scopus Author ID: 57195258640; ORCID ID: 0000-0003-1663-4019; derinakv@tpu.ru 

O.V. Galtseva

Galtseva, Olga Valerievna – Candidate of Technical Sciences, Associate Professor, Division of Testing and Diagnostics, NDT School, Tomsk Polytechnic University; Associate Professor, Department of Innovation Management, Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia; Scopus Author ID: 15049236900; ORCID ID: 0000-0001-6919-4833; tpuolga@tpu.ru  

References

LeGeros R.Z., LeGeros J.P. Hydroxyapatite. (2008) Bioceramics and their Clinical Applications. Woodhead Publishing. 367 – 394. DOI: 10.1533/9781845694227.2.367.

Rial R., González-Durruthy M., Liu Z., Ruso J.M. (2021) Advanced materials based on nanosized hydroxyapatite. Molecules, 26, 3190. DOI: 10.3390/molecules26113190.

Dorozhkin S.V. (2022) Calcium orthophosphate (CaPO4)-based bioceramics: preparation, properties, and applications. Coating, 12, 1380. DOI: 10.3390/coatings12101380.

Das A., Pamu D. (2019) A comprehensive review on electrical properties of hydroxyapatite based ceramic composites. Materials Science and Engineering: C, 101, 539–563. DOI: 10.1016/j.msec.2019.03.077.

Corno M., Busco C., Civalleri B., Ugliengo P. (2006) Periodic ab initio study of structural and vibrational features of hexagonal hydroxyapatite Ca10(PO4)6(OH)2. Physical Chemistry Chemical Physics, 8, 2464–2472. DOI:10.1039/B602419J.

Bystrov V., Paramonova E., Avakyan L., Coutinho J., Bulina N. (2021) Simulation and computer study of structures and physical properties of hydroxyapatite with various defects. Nanomaterials, 11, 2752. DOI:10.3390/nano11102752.

Yang Z., Zhou S., Zu J., Inman D. (2018) High-performance piezoelectric energy harvesters and their applications. Joule, 2(4), 642–697. DOI:10.1016/j.joule.2018.03.011.

Aabid A., Raheman M.A., Ibrahim Y.E., et al. (2021) A systematic review of piezoelectric materials and energy harvesters for industrial applications. Sensors, 21, 4145. DOI: 10.3390/s21124145.

Xu Z., Li C., Wang N., Ding Y., Yan Z., Li Q. (2024) Functional graphitic carbon nitride/hydroxyapatite heterojunction for robust formaldehyde removal at ambient temperature. Journal of Environmental Chemical Engineering, 12(1), 111679. DOI: 10.1016/j.jece.2023.111679.

Lan Y.-T., Yang X.-Y., Liu S.-X., Miao Y.-X., Zhao Z. (2022) Highly dispersed silver nanoparticles supported on a hydroxyapatite catalyst with different morphologies for CO oxidation. New Journal of Chemistry, 46, 6940–6945. DOI: 10.1039/D2NJ00464J.

Wang Y., Zhou X., Wei X., et al. (2021) Co/hydroxyapatite catalysts for N2O catalytic decomposition: design of well-defined active sites with geometrical and spacing effects. Molecular Catalysis, 501, 111370. DOI:10.1016/j.mcat.2020.111370.

Guo J., Duchesne P.N., Wang L., et al. (2020) High-performance, scalable, and low-cost copper hydroxyapatite for photothermal CO2 reduction. ACS Catalysis, 10, 13668–13681. DOI: 10.1021/acscatal.0c03806.

Yamada H., Tamura K., Watanabe Y., Iyi N., Morimoto K. (2011) Geomaterials: their application to environmental remediation. Science and Technology of Advanced Materials, 12, 064705. DOI: 10.1088/1468-6996/12/6/064705.

Javadinejad H.R., Ebrahimi-Kahrizsangi R. (2021) Thermal and kinetic study of hydroxyapatite formation by solid-state reaction. International Journal of Chemical Kinetics, 53, 583–595. DOI: 10.1002/kin.21467.

Mobasherpour I., Soulati Heshajin M., Kazemzadeh A., Zakeri M. (2007) Synthesis of nanocrystalline hydroxyapatite by using precipitation method. Journal of Alloys and Compounds, 430, 330–333. DOI:10.1016/j.jallcom.2006.05.018.

Bilton M., Milne S.J., Brown A.P. (2012) Comparison of hydrothermal and sol-gel synthesis of nano-particulate hydroxyapatite by characterization at the bulk and particle level. Open Journal of Inorganic Non-metallic Materials, 2, 1–10. DOI: 10.4236/ojinm.2012.21001.

Yang Y., Ong J.L., Tian J. (2002) Rapid sintering of hydroxyapatite by microwave processing. Journal of Materials Science Letters, 21, 67–69. DOI: 10.1023/A:1014250813564.

Shaban N.Z., Kenawy M.Y., Taha N.A., Abd El-Latif M.M., Ghareeb D.A. (2021) Synthesized nanorods hydroxyapatite by microwave-assisted technology for in vitro osteoporotic bone regeneration through Wnt/β-catenin pathway. Materials, 14, 5823. DOI: 10.3390/ma14195823.

Mohd Pu'ad N.A.S., Abdul Haq R.H., Mohd Noh H., Abdullah H.Z., Idris M.I., Lee T.C. (2020) Synthesis method of hydroxyapatite: a review. Materials Today: Proceedings, 29(1), 233–239. DOI:10.1016/j.matpr.2020.05.536.

Sultana S., Hossain M.S., Mahmud M., et al. (2021) UV-assisted synthesis of hydroxyapatite from eggshells at ambient temperature: cytotoxicity, drug delivery and bioactivity. RSC Advances, 11(6), 3686–3694. DOI:10.1039/D0RA09673C.

Leonov A., Usacheva T., Lyapunov D., Voronina N., Galtseva O., Rogachev A. (2021) Improving the heat resistance of polymer electrical insulation systems for the modernization of induction motors. Eurasian Physical Technical Journal, 18(1) (35), 34–42. DOI: 10.31489/2021No1/34-42.

Poinern G.E., Brundavanam R.K., Mondinos N., Jiang Z.T. (2009) Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method. Ultrasonics Sonochemistry, 16(4), 469–474. DOI:10.1016/j.ultsonch.2009.01.007.

Rouhani P., Taghavinia N., Rouhani S. (2010) Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation. Ultrasonics Sonochemistry, 17(5), 853–856. DOI:10.1016/j.ultsonch.2010.01.010.

Bouyer E., Gitzhofer F., Boulos M.I. (2000) Morphological study of hydroxyapatite nanocrystal suspension, Journal of Materials Science: Materials in Medicine, 11(8), 523–531. DOI: 10.1023/A:1008918110156.

Agbeboh N.I., Oladele I.O., Daramola O.O., Adediran A.A., Olasukanmi O.O., Tanimola M.O. (2020) Environmentally sustainable processes for the synthesis of hydroxyapatite. Heliyon, 6(4), e03765. DOI:10.1016/j.heliyon.2020.e03765.

Sing K.S.W. (1998) Adsorption methods for the characterization of porous materials. Advances in Colloid and Interface Science, 76–77, 3–11. DOI:10.1016/S0001-8686(98)00038-4.

Kannan S., Lemos A.F., Ferreira J.M.F. (2006) Synthesis and mechanical performance of biological-like hydroxyapatites. Chemistry of Materials, 18(8), 2181–2186. DOI:10.1021/cm052567q.

Szterner P., Biernat M. (2022) The synthesis of hydroxyapatite by hydrothermal process with calcium lactate pentahydrate: the effect of reagent concentrations, pH, temperature, and pressure. Bioinorganic Chemistry and Applications, 3481677. DOI: 10.1155/2022/3481677.

Wang Y.J., Chen J.D., Wei K., Zhang S.H., Wang X.D. (2006) Surfactant-assisted synthesis of hydroxyapatite particles. Materials Letters, 60(27), 3227–3231. DOI: 10.1016/j.matlet.2006.02.077.

Safavi M.S., Walsh F.C., Surmeneva M.A., Surmenev R.A., Khalil-Allafi J. (2021) Electrodeposited hydroxyapatite-based biocoatings: Recent progress and future challenges. Coatings, 11, 110. DOI:10.3390/coatings11010110.

Downloads

Received

2024-03-22

Revised

2024-07-03

Accepted

2024-09-20

Published online

2024-09-30

How to Cite

Mostovshchikov, A., Grebnev, M., Rudmin, M., Nazarenko, O., Derina, K., & Galtseva, O. (2024). SYNTHESIS AND CHARACTERIZATION OF HYDROXYAPATITE UNDER INFLUENCE OF ULTRAVIOLET RADIATION AND ULTRASONIC EXPOSURE. Eurasian Physical Technical Journal, 21(3(49), 54–62. https://doi.org/10.31489/2024No3/54-62

Issue

Section

Engineering
Loading...