MODELING IN THE DESIGN OF TECHNOLOGICAL PROCESSES FOR DRAWING WITH WALL THINNING OF HOLLOW AXISYMMETRIC PARTS FOR VARIOUS PURPOSES
DOI:
https://doi.org/10.31489/2024No4/99-108Keywords:
Technological process, drawing with wall thinning, intense plastic deformation, criterion of approximate monotonicity, stress-strain stateAbstract
There are a number of products that operate under extremely difficult conditions of complex loading, the manufacture of which by traditional stamping operations does not provide the required properties, which leads to a large number of defects. One of the possible directions for the manufacture of products of increased strength is the introduction into the technological process of methods of intense plastic deformation, which can be either volumetric (equal-channel angular pressing, longitudinal extrusion through a channel of variable cross-section, drawing with wall thinning along the internal contour) or surface (grinding holes, rolling with rollers or balls). The study demonstrates the application of the approximate monotonicity criterion and its relationship with technological parameters, using the example of a deep drawing process with wall thinning. A case is presented where technological parameters, including friction conditions and the degree of deformation, are selected to ensure approximate monotonicity during the thinning process. The findings provide a basis for the rational selection of the "strain-stress" curve, contributing to a more accurate and efficient design of deformation processes.
References
Vinnik P.M., Ivanov K.M. (2016) Processes of complex loading in technological problems. News of higher educational institutions. Mechanical engineering. 6, 675, 62-72. Available at: https://www.researchgate.net/publication/308389554_ Combined_Loading_Processes_in_Technological_Problems
Smirnov-Alyaev G.A. (1978) Resistance of materials to plastic deformation. Leningrad, Mashinostroenie Publ., 368 p. Available at: https://studfile.net/preview/19957333/ [in Russian]
Haghshenas M., Klassen R.J. (2015) Mechanical characterization of flow formed FCC alloys. Materials Science and Engineering, 641, 249 – 55. DOI: 10.1016/j.msea.2015.06.046. DOI: https://doi.org/10.1016/j.msea.2015.06.046
Bhatt R.J., Raval H.K. (2017) Investigation of effect of material properties on forces during flow forming process. Procedia Engineering, 173, 1587 – 1594. DOI: 10.1016/j.proeng.2016.12.265. DOI: https://doi.org/10.1016/j.proeng.2016.12.265
Davidson M.J., Balasubramanian K., Tagorea G.R.N. (2008) An experimental study on the quality of flowformed AA6061 tubes. Journal of Materials Processing Technology, 203 (1–3), 321 – 325. DOI:10.1016/j.jmatprotec.2007.10.021. DOI: https://doi.org/10.1016/j.jmatprotec.2007.10.021
Bedekar V., Pauskar P., Shivpuri R. (2017) Microstructure and texture evolutions in AISI 1050 steel by flow forming. J. HoweProcedia Engineering, 81, 2355 – 2360. DOI: 10.1016/j. proeng.2014.10.333. DOI: https://doi.org/10.1016/j.proeng.2014.10.333
Marini D., Corney J. (2008) A methodology for assessing the feasibility of producing components by flow forming. Journal of Materials Processing Technolog, 5(1), 210–234. DOI: 10.1080/21693277.2017.1374888. DOI: https://doi.org/10.1080/21693277.2017.1374888
Wang X., Xia Q., Cheng X. (2017) Deformation behavior of Haynes 230 superalloy during backward flow forming. Int. J. Precis. Eng. Manuf., 18(1), 77 – 83. DOI: 10.1007/s12541-017-0009-4. DOI: https://doi.org/10.1007/s12541-017-0009-4
Udalov A.A., Parshin S.V., Udalov A.V. (2018) Theoretical investigation of the effect of the taper angle of the deforming roller on the limiting degrees of deformation in the process of flow forming. MATEC Web of Conferences, 224, 01040. DOI: 10.1051/matecconf/201822401040. DOI: https://doi.org/10.1051/matecconf/201822401040
Udalov A.A., Parshin S.V., Udalov A.V. (2019) Influence of the profile radius of the deforming roller on the limit degree of deformation in the process of flow forming. Materials Science Forum, 946, 800 – 806. DOI:10.4028/www.scientific.net/msf.946.800. DOI: https://doi.org/10.4028/www.scientific.net/MSF.946.800
Okulov R.A., Semenova N.V. (2019) Modeling the Drawing of Square-Cross-Section Pipes/Tubes Made from Various Materials. Metallurgist, 65, 571-577. Available at: https://link.springer.com/article/10.1007/s11015-021-01192-z. DOI: https://doi.org/10.1007/s11015-021-01192-z
Hatala M., Botko F., Peterka J., Bella P., Radic P. (2020) Evaluation of strain in cold drawing of tubes with internally shaped surface. Materials Today: Proceedings, 22, 287 – 292. Available at: https://www.sciencedirect.com/ science/article/abs/pii/S2214785319330962 DOI: https://doi.org/10.1016/j.matpr.2019.08.119
Boutenel F., Delhomme M., Velay V., Boman R. (2018) Finite element modelling of cold drawing for high-precision tubes. Comptes Rendus – Mecanique, 346, 665 – 677. Available at: https://www.sciencedirect.com/science/ article/pii/S1631072118301220 DOI: https://doi.org/10.1016/j.crme.2018.06.005
Vorontsov A.L. (2014) Theory and calculations of metal forming processes. Vol. 2. Moscow, BMSTU Publ., 441. Available at the: https://www.labirint.ru/books/541059/ [in Russian]
Vinnik P.M., Ivanov K.M., Danilin G.A., Remshev E.Yu., Vinnik T.V. (2015) Prediction of the mechanical properties of a part obtained by drawing with thinning. Metalloobrabotka, 88, 31 – 36. Available at: https://polytechnics.ru/arhmo/2015/product-details/365-metalloobrabotka-4-88-2015.html.
Downloads
Received
Revised
Accepted
Published online
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.