INFLUENCE OF THE INTERELECTRODE GAP WIDTH ON THE QUALITY OF FOCUSING OF ELECTROSTATIC MIRRORS WITH ROTATIONAL SYMMETRY

INFLUENCE OF THE INTERELECTRODE GAP WIDTH ON THE QUALITY OF FOCUSING OF ELECTROSTATIC MIRRORS WITH ROTATIONAL SYMMETRY

Authors

DOI:

https://doi.org/10.31489/2024No4/149-157

Keywords:

time-of-flight mass spectrometer, electron microscope, electrostatic mirror, space-time-of-flight focusing, spherical aberration, axial chromatic aberration

Abstract

The influence of the width of the interelectrode gap on the focusing quality of electrostatic mirrors with rotational symmetry, the electrodes of which are coaxial cylinders of equal diameter separated by gaps of finite width, has been studied. Formulas, convenient for the numerical calculation of the exact values ​​of the axial potential distribution in such mirrors, are proposed. Using the obtained formulas  in numerical calculations and taking into account the width of the interelectrode gap, the geometric and electrical parameters of two- and three-electrode mirrors were determined, which provide spatial focusing of beams of charged particles simultaneously with the elimination of time-of-flight chromatic aberrations and spherical and axial chromatic spatial aberrations, the most important factors in terms of influence on the resolution of time-of-flight mass spectrometers and electron microscopes. It is shown that the width of the interelectrode gap has a significant effect on the quality of focusing of electrostatic mirrors with cylindrical electrodes.

Author's detail

S.B. Bimurzaev

Bimurzaev, Seitkerim - Professor, Doctor of Physics and Mathematics, Chief Researcher, G. Daukeev Almaty University of Power Engineering and Telecommunication, Almaty, Kazakhstan; Scopus Author ID: 6603367014, Web of Science Researcher ID: Q-9680-2016, ORCID: 0000-0001-7778-1536; bimurzaev@mail.ru

Z.S. Sautbekova

Sautbekova, Zerde – PhD, Researcher, G. Daukeev Almaty University of Power Engineering and Telecommunication, Almaty, Kazakhstan; Scopus Author ID: 55946640100, ORCID ID: 0000-0001-9198-4524, zerdesautbekova@yandex.ru

References

Mamyrin B.A. (2001) Time-of-flight mass spectrometry (concepts, achievements, and prospects). Int. J. Mass Spectrometry, 206 (3), 251-266. DOI: 10.1016/S1387-3806(00)00392-4. DOI: https://doi.org/10.1016/S1387-3806(00)00392-4

Wollnik H., Casares A. (2003) An energy-isochronous multi-pass time-of-flight mass spectrometer consisting of two coaxial electrostatic mirrors. Int. J. Mass Spectrometry, 227 (2), 217-222. DOI: 10.1016/S1387-3806(03)00127-1. DOI: https://doi.org/10.1016/S1387-3806(03)00127-1

Yavor M., Verentchikov A., Hasin Y., Kozlov B., Gavrik M., Trufanov A. (2008) Planar multi-reflecting time-of-flight mass analyzer with a jig-saw ion path. Physics Procedia, 1 (1), 391-400. DOI: 10.1016/j.phpro.2008.07.120. DOI: https://doi.org/10.1016/j.phpro.2008.07.120

Spivak‐Lavrov I., Baisanov O., Yakushev E., Nazarenko L. (2019) TOF mass spectrometers based on a wedge‐shaped electrostatic mirror with a two‐dimensional field. Rapid Communications in Mass Spectrometry, 34(4). DOI:10.1002/rcm.8590. DOI: https://doi.org/10.1002/rcm.8590

Bimurzaev S.B., Aldiyarov N. U., Sautbekova Z.S. (2020) High Dispersive Electrostatic Mirrors of Rotational Symmetry with the Third Order Time-of-Flight Focusing by Energy. Technical Physics, 65, 1150–1155. DOI:10.1134/S1063784220070051. DOI: https://doi.org/10.1134/S1063784220070051

Rempfer G.F. (1990) A theoretical study of the hyperbolic electron mirror as a correcting element for spherical and chromatic aberration in electron optics. J.Appl. Phys., 67 (10), 6027-6040. DOI: 10.1063/1.345212. DOI: https://doi.org/10.1063/1.345212

Preikszas D., Rose H. (1997) Correction properties of electron mirrors. Microscopy, 46 (1), 1-9. DOI:10.1093/oxfordjournals.jmicro.a023484. DOI: https://doi.org/10.1093/oxfordjournals.jmicro.a023484

Hartel P., Preikszas D., Spehr R., Muller H., Rose H. (2002) Mirror corrector for low-voltage electron microscopes. Adv. Imaging & Electron Phys., 120, 41-133. DOI: 10.1016/S1076-5670(02)80034-9. DOI: https://doi.org/10.1016/S1076-5670(02)80034-9

Hawkes P.W. (2009) Aberration correction past and present. Phil. Trans. R. Soc. DOI: 10.1098/rsta.2009.0004. DOI: https://doi.org/10.1098/rsta.2009.0004

Tromp R.M., Hannon J.B., Wanb W., Berghaus A., Schaff O. (2010) A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design. Ultramicroscopy, 110 (7), 852-861. DOI:10.1016/j.ultramic.2010.03.005. DOI: https://doi.org/10.1016/j.ultramic.2010.03.005

Tromp R.M., Hannon J.B., Wanb W., Berghaus A., Schaff O. (2013) A new aberration-corrected, energy-filtered LEEM/PEEM instrument. II. Operation and results. Ultramicroscopy, 127, 25-39. DOI:10.1016/j.ultramic.2012.07.016. DOI: https://doi.org/10.1016/j.ultramic.2012.07.016

Bimurzaev S.B., Aldiyarov N.U., Yakushev E.M. (2017) The objective lens of the electron microscope with correction of spherical and axial chromatic aberrations, Microscopy, 66 (5), 356-365. DOI: 10.1093/jmicro/dfx023. DOI: https://doi.org/10.1093/jmicro/dfx023

Bimurzaev S.B., Serikbaeva G.S., Yakushev Е.М. (2003) Electrostatic Mirror Objective with Eliminated Spherical and Axial Chromatic Aberrations. Microscopy, 52 (4), 365-368. DOI: 10.1093/jmicro/52.4.365. DOI: https://doi.org/10.1093/jmicro/52.4.365

Bimurzaev S.B., Yakushev E.M. (2022) Relativistic Theory of Aberrations of Electrostatic Electron-Optical Systems. Nucl. Instr. Meth. Phys. Res. A., 1022, 1-10. DOI: 10.1016/j.nima.2021.165956. DOI: https://doi.org/10.1016/j.nima.2021.165956

Zhu X., Munro E. (1995) Second-Order Finite Element Method and its Practical Application in Charged Particle Optics. Journal of Microscopy, 179(2), 172 – 180. DOI: 10.1111/j.1365-2818.1995.tb03629.x. DOI: https://doi.org/10.1111/j.1365-2818.1995.tb03629.x

Bobykin B.V., Nevinnyi Yu.A., Yakushev E.M. (1975). Electron-optical lens as a preliminary accelerator of slow electrons in beta-spectrometry. Zhurnal Tekhnicheskoi Fiziki, 45, 2368–2372.

Gray F. Electrostatic electron-optics (1939) Bell. Syst. Techn. Journ., 18(1), 1-31. DOI: 10.1002/j.1538-7305.1939.tb00805.x. DOI: https://doi.org/10.1002/j.1538-7305.1939.tb00805.x

Bimurzaev S.B., Bimurzaeva R.S., Sarkeev B.T. (1991) Spatial and time-of-flight focusing in an electrostatic lens-mirror system with two planes of symmetry. Radiotekhnika I Elektronika, 36, 2186–2195.

Yakushev E.M., Sekunova L.M. (1986) Theory of electron mirrors and cathode lenses. Advances in Electronics and Electron Physics, 68, 337–416. DOI: 10.1016/S0065-2539(08)60856-2. DOI: https://doi.org/10.1016/S0065-2539(08)60856-2

Yakushev, E. M. (2013). Theory and computation of electron mirrors: The central particle method. Advances in Imaging and Electron Physics, 178, 147–247. Elsevier. DOI: 10.1016/B978-0-12-407701-0.00003-0. DOI: https://doi.org/10.1016/B978-0-12-407701-0.00003-0

Downloads

Received

2024-08-28

Revised

2024-11-14

Accepted

2024-12-20

Published online

2024-12-25

How to Cite

Bimurzaev, S., & Sautbekova, Z. (2024). INFLUENCE OF THE INTERELECTRODE GAP WIDTH ON THE QUALITY OF FOCUSING OF ELECTROSTATIC MIRRORS WITH ROTATIONAL SYMMETRY . Eurasian Physical Technical Journal, 21(4(50), 149–157. https://doi.org/10.31489/2024No4/149-157

Issue

Section

Physics and Astronomy

Similar Articles

You may also start an advanced similarity search for this article.

Loading...