STUDY OF THERMOPHYSICAL DYNAMICS IN BIOFUEL DROPLET ATOMIZATION AND COMBUSTION

STUDY OF THERMOPHYSICAL DYNAMICS IN BIOFUEL DROPLET ATOMIZATION AND COMBUSTION

Authors

DOI:

https://doi.org/10.31489/2025N2/60-69

Keywords:

bioenergetics, biofuel, atomization, complex model, common rail system, visualization, harmful emissions

Abstract

The article presents a study of computer modeling of thermophysical processes occurring during atomization and turbulent combustion of biofuel (biodiesel) droplets in the combustion chamber of a direct injection engine. For this purpose, a complex computer model was developed, including mathematical, spatial, and numerical submodels for calculating a complex turbulent reacting flow. Using the developed model, computational experiments were performed to investigate the thermal and aerodynamic properties of the reacting fuel-air mixture of biodiesel, focusing on the effects of temperature and pressure variations in the combustion chamber. The research results made it possible to obtain a visualization of the reacting flow with temperature and concentration characteristics of harmful emissions during biodiesel combustion. The numerical data obtained during the modeling were compared with the results for traditional diesel fuel.

References

Macheli L., Malefane M.E., Jewell L.L. (2025) Waste-derived calcium oxide catalysts in biodiesel production: Exploring various waste sources, deactivation challenges, and improvement strategies, Bioresour. Technol., 29, 102021. https://doi.org/10.1016/j.biteb.2025.102021 DOI: https://doi.org/10.1016/j.biteb.2025.102021

Ogunkunle O., Ahmed N.A. (2019) A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines, Energy Reports, 5, 1560–1579. https://doi.org/10.1016/j.egyr.2019.10.028 DOI: https://doi.org/10.1016/j.egyr.2019.10.028

Pranta M.H., Cho H.M. (2025) A comprehensive review of the evolution of biodiesel production technologies, Energy Convers. Manage., 328, 119623. https://doi.org/10.1016/j.enconman.2025.119623 DOI: https://doi.org/10.1016/j.enconman.2025.119623

Bajwa K., Bishnoi N.R., Selven S.T. (2024) Green Gold: Sustainable Biodiesel Production and Bioactive Compounds Extraction from Microalgae, J. Energy Res. Rev., 16, 19–36. https://doi.org/10.9734/jenrr/2024/v16i12384 DOI: https://doi.org/10.9734/jenrr/2024/v16i12384

Advantages and effectiveness: Kazakhstan's progress in developing new energy sources. Available at: https://qazaqgreen.com/en/news/kazakhstan/1750/

Kazakhstan has good prospects for the development of the biofuel market. Available at: https://www.apk-inform.com/ru/news/1533576

Askarova A., Bolegenova S., Ospanova S., Bolegenova S., Baidullayeva G., Berdikhan K., Nussipzhan A. (2024) Determining the optimal oxidation temperature of non-isothermal liquid fuels injections using modeling based on statistical droplet distribution, East.-Eur. J. Enterp. Technol., 6, 8 (132), 44-55. https://doi.org/10.15587/1729-4061.2024.316100 DOI: https://doi.org/10.15587/1729-4061.2024.316100

Oruganti S.K., Gorokhovski M.A. (2024) Stochastic models in the under-resolved simulations of spray formation during high-speed liquid injection, Phys. Fluids, 36, 052105. https://doi.org/10.1063/5.0206826 DOI: https://doi.org/10.1063/5.0206826

Askarova A., Bolegenova S., Ospanova Sh., Slavinskaya N., Aldiyarova A., Ungarova N. (2021) Simulation of non-isothermal liquid sprays under large-scale turbulence, Phys. Sci. Technol., 8, 28-40. https://doi.org/10.26577/phst.2021.v8.i2.04 DOI: https://doi.org/10.26577/phst.2021.v8.i2.04

Gorokhovski M.A., Oruganti S.K. (2022) Stochastic models for the droplet motion and evaporation in under-resolved turbulent flows at a large Reynolds number, J. Fluid Mech., 932, 18. https://doi.org/10.1017/jfm.2021.916 DOI: https://doi.org/10.1017/jfm.2021.916

Gorokhovski M., Zamansky R. (2018) Modeling the effects of small turbulent scales on the drag force for particles below and above the Kolmogorov scale, Phys. Rev. Fluids., 3, 034602. https://doi.org/10.1103/PhysRevFluids.3.034602 DOI: https://doi.org/10.1103/PhysRevFluids.3.034602

Amsden A.A., O'Rourke P.J., Butler T.D. (1989) KIVA-II: A computer program for chemically reactive flows with sprays, Los Alamos, 160 p. Available at: https://www.lanl.gov/projects/feynman-center/deploying-innovation/intellectual -property/software-tools/kiva/_assets/docs/KIVA2.pdf DOI: https://doi.org/10.2172/6228444

Mishra Y.N. (2018) Droplet size, concentration, and temperature mapping in sprays using SLIPI-based techniques Lund: Division of Combustion Physics, Department of Physics, Lund University. Thesis for Ph.D., 85 p. Available at: https://portal.research.lu.se/en/publications/droplet-size-concentration-and-temperature-mapping-in-sprays-usin

Liang L., Reitz R., Iyer C., Yi J. (2007) Modeling Knock in Spark-Ignition Engines Using a G-equation Combustion Model Incorporating Detailed Chemical Kinetics, SAE Tech. Pap., 2007-01-0165. https://doi.org/10.4271/2007-01-0165 DOI: https://doi.org/10.4271/2007-01-0165

Ra Y., Reitz R.D. (2008) A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels, Combust. Flame, 155, 713–738. https://doi.org/10.1016/j.combustflame.2008.05.002 DOI: https://doi.org/10.1016/j.combustflame.2008.05.002

Askarova A.S., Bolegenova S.A., Ospanova Sh.S., Rakhimzhanova L.A., Nurmukhanova A.Z., Adilbayev N.A. (2024) Optimization of fuel droplet sputtering and combustion at high turbulence flows, Russ. Phys. J., 67, 2, 167-170. https://doi.org/10.1007/s11182-024-03104-5 DOI: https://doi.org/10.1007/s11182-024-03104-5

Bolegenova S., Askarova A., Ospanova S., Zhumagaliyeva S., Makanova A., Aldiyarova A., Nurmukhanova A., Idrissova G. (2024) Technology of reducing greenhouse gas emissions for decarbonization and decreasing anthropogenic pressure on the environment, Phys. Sci. Technol, 11, 1-2, 64-75. https://doi.org/10.26577/phst2024v11i1a8 DOI: https://doi.org/10.26577/phst2024v11i1a8

Azad A.K., Doppalapudi A.T., Khan M.M.K., Hassan N.M.S., Gudimetla P. (2023) A landscape review on biodiesel combustion strategies to reduce emission, Energy Reports, 9, 4413–4436. https://doi.org/10.1016/j.egyr.2023.03.104 DOI: https://doi.org/10.1016/j.egyr.2023.03.104

Bolegenova S., Askarova A., Ospanova S., Makanova A., Zhumagaliyeva S., Nurmukhanova A., Adilbayev N., Shalkar A. (2024) Simulation of liquid fuel spray formation and distribution in a reacting turbulent flow, Eurasian Phys. Tech. J., 21, 22–30. https://doi.org/10.31489/2024No2/22-30 DOI: https://doi.org/10.31489/2024No2/22-30

Gavaises M., Arcoumanis C., Theodorakakos A., Bergeles G. (2001) Structure of high-pressure diesel sprays, SAE Tech. Pap., 2001-24-0009. https://doi.org/10.4271/2001-24-0009. DOI: https://doi.org/10.4271/2001-24-0009

Downloads

Published online

2025-06-30

How to Cite

Askarova, A., Bolegenova, S., Ospanova, S., Maxutkhanova, A., Bolegenova, K., & Baidullayeva, G. (2025). STUDY OF THERMOPHYSICAL DYNAMICS IN BIOFUEL DROPLET ATOMIZATION AND COMBUSTION . Eurasian Physical Technical Journal, 22(2 (52), 60–69. https://doi.org/10.31489/2025N2/60-69

Issue

Section

Energy

Similar Articles

You may also start an advanced similarity search for this article.

Loading...