Исследование теплофизической динамики при распылении и горении капель биотоплива.
DOI:
https://doi.org/10.31489/2025N2/60-69Ключевые слова:
биоэнергетика, биотопливо, распыление, комплексная модель, аккумуляторная топливная система, 3D визуализация, вредные выбросыАннотация
В статье представлено исследование 3D компьютерного моделирования теплофизических процессов, происходящих при распылении и турбулентном горении капель биотоплива (биодизеля) в камере сгорания двигателя с непосредственным впрыском. Для этого была разработана комплексная компьютерная модель, включающая математическую, пространственную и численную подмодели для расчета сложного турбулентного реагирующего течения. С использованием разработанной модели были проведены 3D вычислительные эксперименты по исследованию тепловых и аэродинамических свойств реагирующей топливно-воздушной смеси биодизеля с учетом влияния изменения температуры и давления в камере сгорания. Результаты исследований позволили получить 3D визуализацию реагирующего течения с температурными и концентрационными характеристиками вредных выбросов при сжигании биодизеля. Полученные в ходе моделирования численные данные сравнивались с результатами для традиционного дизельного топлива.
Библиографические ссылки
Macheli L., Malefane M.E., Jewell L.L. (2025) Waste-derived calcium oxide catalysts in biodiesel production: Exploring various waste sources, deactivation challenges, and improvement strategies, Bioresour. Technol., 29, 102021. https://doi.org/10.1016/j.biteb.2025.102021 DOI: https://doi.org/10.1016/j.biteb.2025.102021
Ogunkunle O., Ahmed N.A. (2019) A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines, Energy Reports, 5, 1560–1579. https://doi.org/10.1016/j.egyr.2019.10.028 DOI: https://doi.org/10.1016/j.egyr.2019.10.028
Pranta M.H., Cho H.M. (2025) A comprehensive review of the evolution of biodiesel production technologies, Energy Convers. Manage., 328, 119623. https://doi.org/10.1016/j.enconman.2025.119623 DOI: https://doi.org/10.1016/j.enconman.2025.119623
Bajwa K., Bishnoi N.R., Selven S.T. (2024) Green Gold: Sustainable Biodiesel Production and Bioactive Compounds Extraction from Microalgae, J. Energy Res. Rev., 16, 19–36. https://doi.org/10.9734/jenrr/2024/v16i12384 DOI: https://doi.org/10.9734/jenrr/2024/v16i12384
Advantages and effectiveness: Kazakhstan's progress in developing new energy sources. Available at: https://qazaqgreen.com/en/news/kazakhstan/1750/
Kazakhstan has good prospects for the development of the biofuel market. Available at: https://www.apk-inform.com/ru/news/1533576
Askarova A., Bolegenova S., Ospanova S., Bolegenova S., Baidullayeva G., Berdikhan K., Nussipzhan A. (2024) Determining the optimal oxidation temperature of non-isothermal liquid fuels injections using modeling based on statistical droplet distribution, East.-Eur. J. Enterp. Technol., 6, 8 (132), 44-55. https://doi.org/10.15587/1729-4061.2024.316100 DOI: https://doi.org/10.15587/1729-4061.2024.316100
Oruganti S.K., Gorokhovski M.A. (2024) Stochastic models in the under-resolved simulations of spray formation during high-speed liquid injection, Phys. Fluids, 36, 052105. https://doi.org/10.1063/5.0206826 DOI: https://doi.org/10.1063/5.0206826
Askarova A., Bolegenova S., Ospanova Sh., Slavinskaya N., Aldiyarova A., Ungarova N. (2021) Simulation of non-isothermal liquid sprays under large-scale turbulence, Phys. Sci. Technol., 8, 28-40. https://doi.org/10.26577/phst.2021.v8.i2.04 DOI: https://doi.org/10.26577/phst.2021.v8.i2.04
Gorokhovski M.A., Oruganti S.K. (2022) Stochastic models for the droplet motion and evaporation in under-resolved turbulent flows at a large Reynolds number, J. Fluid Mech., 932, 18. https://doi.org/10.1017/jfm.2021.916 DOI: https://doi.org/10.1017/jfm.2021.916
Gorokhovski M., Zamansky R. (2018) Modeling the effects of small turbulent scales on the drag force for particles below and above the Kolmogorov scale, Phys. Rev. Fluids., 3, 034602. https://doi.org/10.1103/PhysRevFluids.3.034602 DOI: https://doi.org/10.1103/PhysRevFluids.3.034602
Amsden A.A., O'Rourke P.J., Butler T.D. (1989) KIVA-II: A computer program for chemically reactive flows with sprays, Los Alamos, 160 p. Available at: https://www.lanl.gov/projects/feynman-center/deploying-innovation/intellectual -property/software-tools/kiva/_assets/docs/KIVA2.pdf DOI: https://doi.org/10.2172/6228444
Mishra Y.N. (2018) Droplet size, concentration, and temperature mapping in sprays using SLIPI-based techniques Lund: Division of Combustion Physics, Department of Physics, Lund University. Thesis for Ph.D., 85 p. Available at: https://portal.research.lu.se/en/publications/droplet-size-concentration-and-temperature-mapping-in-sprays-usin
Liang L., Reitz R., Iyer C., Yi J. (2007) Modeling Knock in Spark-Ignition Engines Using a G-equation Combustion Model Incorporating Detailed Chemical Kinetics, SAE Tech. Pap., 2007-01-0165. https://doi.org/10.4271/2007-01-0165 DOI: https://doi.org/10.4271/2007-01-0165
Ra Y., Reitz R.D. (2008) A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels, Combust. Flame, 155, 713–738. https://doi.org/10.1016/j.combustflame.2008.05.002 DOI: https://doi.org/10.1016/j.combustflame.2008.05.002
Askarova A.S., Bolegenova S.A., Ospanova Sh.S., Rakhimzhanova L.A., Nurmukhanova A.Z., Adilbayev N.A. (2024) Optimization of fuel droplet sputtering and combustion at high turbulence flows, Russ. Phys. J., 67, 2, 167-170. https://doi.org/10.1007/s11182-024-03104-5 DOI: https://doi.org/10.1007/s11182-024-03104-5
Bolegenova S., Askarova A., Ospanova S., Zhumagaliyeva S., Makanova A., Aldiyarova A., Nurmukhanova A., Idrissova G. (2024) Technology of reducing greenhouse gas emissions for decarbonization and decreasing anthropogenic pressure on the environment, Phys. Sci. Technol, 11, 1-2, 64-75. https://doi.org/10.26577/phst2024v11i1a8 DOI: https://doi.org/10.26577/phst2024v11i1a8
Azad A.K., Doppalapudi A.T., Khan M.M.K., Hassan N.M.S., Gudimetla P. (2023) A landscape review on biodiesel combustion strategies to reduce emission, Energy Reports, 9, 4413–4436. https://doi.org/10.1016/j.egyr.2023.03.104 DOI: https://doi.org/10.1016/j.egyr.2023.03.104
Bolegenova S., Askarova A., Ospanova S., Makanova A., Zhumagaliyeva S., Nurmukhanova A., Adilbayev N., Shalkar A. (2024) Simulation of liquid fuel spray formation and distribution in a reacting turbulent flow, Eurasian Phys. Tech. J., 21, 22–30. https://doi.org/10.31489/2024No2/22-30 DOI: https://doi.org/10.31489/2024No2/22-30
Gavaises M., Arcoumanis C., Theodorakakos A., Bergeles G. (2001) Structure of high-pressure diesel sprays, SAE Tech. Pap., 2001-24-0009. https://doi.org/10.4271/2001-24-0009. DOI: https://doi.org/10.4271/2001-24-0009