DEVELOPMENT OF LOW-TEMPERATURE CELL FOR IR FOURIER-SPECTROSCOPY OF HYDROCARBON MATERIALS

DEVELOPMENT OF LOW-TEMPERATURE CELL FOR IR FOURIER-SPECTROSCOPY OF HYDROCARBON MATERIALS

Authors

DOI:

https://doi.org/10.31489/2025N2/88-96

Keywords:

Fourier-Transform InfraRed spectroscopy, low temperature, cell, cryogenic capillary system, hydrocarbon materials

Abstract

This work introduces a technology for Fourier-Transform InfraRed spectroscopy of hydrocarbon materials at low temperatures and atmospheric pressure. This device allows to study optical properties of various substances at temperature range of 77 – 300 K without need of a vacuum and to obtain new fundamental data since there is insufficient research in this area. Described new techniques and methods are working with Fourier-Transform InfraRed spectrometer, diffuse reflection attachment and two Dewar vessels using for cooling with liquid nitrogen inside cryogenic capillary system and blowing with gaseous nitrogen to create InfraRed inactive environment. It makes this new technique a valuable method for obtaining fundamentally new data useful for various energy and infrastructure spheres along with education field as a theoretical information.

References

Shaalan N.M. (2024) An approach to fabricate nanomaterials using a closed low-temperature growth system. Materials Chemistry and Physics, 328, 129930. https://doi.org/10.1016/j.matchemphys.2024.129930 DOI: https://doi.org/10.1016/j.matchemphys.2024.129930

Sorokin N. I., Arkharova N. A., Karimov D. N. (2024) Synthesis of nano-sized solid electrolyte Pr1-ySryF3-y and the effect of heat treatment on the ionic conductivity of fluoride nanoceramics. Crystallography Reports, 69(4), 561–568. https://doi.org/10.1134/S106377452460145X DOI: https://doi.org/10.1134/S106377452460145X

Carrascosa H., Muñoz Caro G. M., Martín-Doménech R., Cazaux S., Chen Y.-J., Fuente A. (2024) Formation and desorption of sulphur chains (H2S x and S x ) in cometary ice: Effects of ice composition and temperature. Monthly Notices of the Royal Astronomical Society, 533(1), 967–978. https://doi.org/10.1093/mnras/stae1768 DOI: https://doi.org/10.1093/mnras/stae1768

Kakkenpara Suresh S., Dulieu F., Vitorino J., Caselli P. (2024) Experimental study of the binding energy of NH 3 on different types of ice and its impact on the snow line of NH3 and H2 O. Astronomy & Astrophysics, 682, A163. https://doi.org/10.1051/0004-6361/202245775 DOI: https://doi.org/10.1051/0004-6361/202245775

Sokolov D.Y., Yerezhep D., Vorobyova O., Ramos M.A., Shinbayeva A. (2022) Optical studies of thin films of cryocondensed mixtures of water and admixture of nitrogen and argon. Materials, 15(21), 7441. https://doi.org/10.3390/ma15217441 DOI: https://doi.org/10.3390/ma15217441

Sokolov D.Y., Yerezhep D., Vorobyova O., Golikov O., Aldiyarov A.U. (2022) Infrared analysis and effect of nitrogen and nitrous oxide on the glass transition of methanol cryofilms. ACS Omega, 7(50), 46402–46410. https://doi.org/10.1021/acsomega.2c05090 DOI: https://doi.org/10.1021/acsomega.2c05090

Yerezhep D., Akylbayeva A., Golikov O., Sokolov D.Y., Shinbayeva A., Aldiyarov A.U. (2023) Analysis of vibrational spectra of tetrafluoroethane glasses deposited by physical vapor deposition. ACS Omega, 8(22), 19567–19574. https://doi.org/10.1021/acsomega.3c00985 DOI: https://doi.org/10.1021/acsomega.3c00985

Golikov O.Yu., Yerezhep D.E., Sokolov D.Yu. (2023) Researching carbon dioxide hydrates in thin films via FTIR spectroscopy at temperatures of 11-180 K. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 23(3), 483–492. https://doi.org/10.17586/2226-1494-2023-23-3-483-492 DOI: https://doi.org/10.17586/2226-1494-2023-23-3-483-492

Bhavani G., Durga Rao T., Niranjan M.K., Kumar K.R., Sattibabu B., Petkov V., Kannan E.S., Reddy B.H. (2024) Structural, magnetic, optical and electronic properties of Gd2NiIrO6. Physica B: Condensed Matter, 695, 416477. https://doi.org/10.1016/j.physb.2024.416477 DOI: https://doi.org/10.1016/j.physb.2024.416477

Xu J., Liu Q., Zheng T., Xie M., Shen H., Li Y., Guo F., Zhang Q., Duan M., Wu K.-H. (2025) Comparing low-temperature NH3-SCR activity, operating temperature window and kinetic properties of the Mn-Fe-Nb/TiO2 catalysts prepared by different methods. Separation and Purification Technology, 356, 129906. https://doi.org/10.1016/j.seppur.2024.129906 DOI: https://doi.org/10.1016/j.seppur.2024.129906

Nishikino T., Sugimoto T., Kandori H. (2024) Low-temperature FTIR spectroscopy of the L/Q switch of proteorhodopsin. Physical Chemistry Chemical Physics, 26(35), 22959–22967. https://doi.org/10.1039/D4CP02248C DOI: https://doi.org/10.1039/D4CP02248C

Yang Z., Su B., Ding H., Qiu Y., Zhong D. (2024) Prediction of asphalt low-temperature performance by FTIR spectra using comparative modelling strategy. Road Materials and Pavement Design, 1–16. https://doi.org/10.1080/14680629.2024.2383915 DOI: https://doi.org/10.1080/14680629.2024.2383915

Moszczyńska J., Liu X., Wiśniewski M. (2022) Non-thermal ammonia decomposition for hydrogen production over carbon films under low-temperature plasma - In-situ ftir studies. International Journal of Molecular Sciences, 23(17), 9638. https://doi.org/10.3390/ijms23179638 DOI: https://doi.org/10.3390/ijms23179638

Moody G., Kavir Dass C., Hao K., Chen C.-H., Li L.-J., Singh A., Tran K., Clark G., Xu X., Berghäuser G., Malic E., Knorr A., Li X. (2015) Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nature Communications, 6(1), 8315. https://doi.org/10.1038/ncomms9315 DOI: https://doi.org/10.1038/ncomms9315

Golikov O. Yu., Yerezhep D., Sokolov D.Yu. (2023) Improvement of the automatic temperature stabilisation process in the cryovacuum unit. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 23(1), 62–67. https://doi.org/10.17586/2226-1494-2023-23-1-62-67 DOI: https://doi.org/10.17586/2226-1494-2023-23-1-62-67

Dillinger S., Mohrbach J., Hewer J., Gaffga M., Niedner-Schatteburg G. (2015) Infrared spectroscopy of N 2 adsorption on size selected cobalt cluster cations in isolation. Physical Chemistry Chemical Physics, 17(16), 10358–10362. https://doi.org/10.1039/C5CP00047E DOI: https://doi.org/10.1039/C5CP00047E

Fortes P.R., Da Silveira Petruci J.F., Wilk A., Cardoso A.A., Raimundo Jr I.M., Mizaikoff B. (2014) Optimized design of substrate-integrated hollow waveguides for mid-infrared gas analyzers. Journal of Optics, 16(9), 094006. https://doi.org/10.1088/2040-8978/16/9/094006 DOI: https://doi.org/10.1088/2040-8978/16/9/094006

Serdyukov V.I., Sinitsa L.N., Lugovskoi A.A., Emel’yanov N.M. (2020) Liquid-nitrogen-cooled optical cell for the study of absorption spectra in a fourier spectrometer. Atmospheric and Oceanic Optics, 33(4), 393–399. https://doi.org/10.1134/S1024856020040144 DOI: https://doi.org/10.1134/S1024856020040144

Serdyukov, V. I., Sinitsa, L. N., Lugovskoi, A. A., & Emelyanov, N. M. (2019). Low-temperature cell for studying absorption spectra of greenhouse gases. Atmospheric and Oceanic Optics, 32(2), 220–226. https://doi.org/10.1134/S1024856019020106 DOI: https://doi.org/10.1134/S1024856019020106

Sung K., Mantz A. W., Smith M.A.H., Brown L. R., Crawford T.J., Devi V.M., Benner D.C. (2010) Cryogenic absorption cells operating inside a Bruker IFS-125HR: First results for 13CH4 at 7μm. Journal of Molecular Spectroscopy, 262(2), 122–134. https://doi.org/10.1016/j.jms.2010.05.004 DOI: https://doi.org/10.1016/j.jms.2010.05.004

Mantz A.W., Sung K., Brown L.R., Crawford T.J., Smith M.A.H., Malathy Devi V., Chris Benner D. (2014) A cryogenic Herriott cell vacuum-coupled to a Bruker IFS-125HR. Journal of Molecular Spectroscopy, 304, 12–24. https://doi.org/10.1016/j.jms.2014.07.006 DOI: https://doi.org/10.1016/j.jms.2014.07.006

Kenbay A.A., Golikov O.Yu., Aldiyarov A.U., Yerezhep D.E. (2023) Low-temperature cell for IR Fourier spectrometric investigation of hydrocarbon substances. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 23(4), 696–702. https://doi.org/10.17586/2226-1494-2023-23-4-696-702 DOI: https://doi.org/10.17586/2226-1494-2023-23-4-696-702

Nguyen T.-D., Ngo T.Q. (2022) The role of technological advancement, supply chain, environmental, social, and governance responsibilities on the sustainable development goals of SMEs in Vietnam. Economic Research-Ekonomska Istraživanja, 35(1), 4557–4579. https://doi.org/10.1080/1331677X.2021.2015611 DOI: https://doi.org/10.1080/1331677X.2021.2015611

Dollah A., Zainol Rashid Z., Hidayati Othman N., Nurliyana Che Mohamed Hussein S., Mat Yusuf S., Shuhadah Japperi N. (2018) Effects of ultrasonic waves during waterflooding for enhanced oil recovery. International Journal of Engineering & Technology, 7(3.11), 232. https://doi.org/10.14419/ijet.v7i3.11.16015 DOI: https://doi.org/10.14419/ijet.v7i3.11.16015

Mirea R., Cican G. (2024) Theoretical assessment of different aviation fuel blends based on their physical-chemical properties. Engineering, Technology & Applied Science Research, 14(3), 14134–14140. https://doi.org/10.48084/etasr.6524 DOI: https://doi.org/10.48084/etasr.6524

Biaktluanga L., Lalhruaitluanga J., Lalramnghaka J., Thanga H. H. (2024) Analysis of gasoline quality by ATR-FTIR spectroscopy with multivariate techniques. Results in Chemistry, 8, 101575. https://doi.org/10.1016/j.rechem.2024.101575 DOI: https://doi.org/10.1016/j.rechem.2024.101575

Downloads

Published online

2025-06-30

How to Cite

Kenbay, A., Yerezhep, D., & Aldiyarov, A. (2025). DEVELOPMENT OF LOW-TEMPERATURE CELL FOR IR FOURIER-SPECTROSCOPY OF HYDROCARBON MATERIALS. Eurasian Physical Technical Journal, 22(2 (52), 88–96. https://doi.org/10.31489/2025N2/88-96

Issue

Section

Engineering

Most read articles by the same author(s)

Loading...