EVALUATION OF THE APPLICATION EFFICIENCY OF MULTICOMPONENT CERAMICS AS PROTECTIVE SHIELDING AND THERMAL BARRIER MATERIALS

EVALUATION OF THE APPLICATION EFFICIENCY OF MULTICOMPONENT CERAMICS AS PROTECTIVE SHIELDING AND THERMAL BARRIER MATERIALS

Authors

DOI:

https://doi.org/10.31489/2025N3/24-35

Keywords:

composite multicomponent ceramics, shielding materials, thermal shock exposure, stabilization, doping

Abstract

The paper presents the comparative analysis results of the shielding characteristics of multicomponent ceramics obtained by mixing TeO2, CeO2, WO3, ZnO, Bi2O3 and ZrO2 oxides in various molar ratios, enabling acquisition of ceramics with a variable phase composition. According to the results of X-ray phase analysis, the addition of ZrO2 to the composition of composite ceramics leads to the formation of a monoclinic substitution phase ZrCeO2. The contribution growth of the latter results in strength properties growth due to a change in the concentration of interphase boundaries in the composition of ceramics. During the tests conducted for resistance to thermal effects capable of leading to destabilization of the crystalline structure, it was established that an increase in the contribution of ZrO2 in the composition of ceramics leads to an increase in resistance to thermally induced softening processes, and an increase in the stress resistance of ceramics during tests for thermal shock effects. During determination of the shielding characteristics of the studied ceramics, it was found that the formation of a stabilizing ZrCeO2 phase in the composition of multicomponent ceramics leads to an elevation in the shielding efficiency, as well as the stability of the preservation of shielding characteristics as a result of long-term thermal effects and thermal shock tests. Moreover, the greatest increase in the efficiency of the measured parameters is observed in the case of assessment of thermal insulation characteristics. The increase in the latter is more than 2.5 times compared to non-stabilized ceramics, which do not contain inclusions in the form of the ZrCeO2 phase.

References

Al-Buriahi M.S., Olarinoye I.O., Yılmaz E., Çalıskan F., Sriwunkum C. (2025) Evaluation of the structural and radiation transmission parameters of recycled borosilicate waste glass system: An effective material for nuclear shielding. Annals of Nuclear Energy, 213, 111136. https://doi.org/10.1016/j.anucene.2024.111136 DOI: https://doi.org/10.1016/j.anucene.2024.111136

Alrowaily A.W., Almuqrin A.H., Sayyed M.I., Albarzan B. (2025) Understanding radiation shielding performance through a comparative study of half value layer in novel and preexisting silicate glasses. Nuclear Engineering and Technology, 57(3), 103268. https://doi.org/10.1016/j.net.2024.10.030 DOI: https://doi.org/10.1016/j.net.2024.10.030

Sayyed M.I., Hamad M.K., Mhareb M.H.A. (2025) Radiation shielding properties for a borosilicate glass: Role of varying PbO. Optical Materials, 159, 116602. https://doi.org/10.1016/j.optmat.2024.116602 DOI: https://doi.org/10.1016/j.optmat.2024.116602

Zhang M., Wang K., Cao Z., Yang S., Han Y., Lv H., Jia J. (2025) Environment-friendly glass with high refractive index and radiation resistance. Ceramics International, 51(2), 1978-1987. https://doi.org/10.1016/j.ceramint.2024.11.172 DOI: https://doi.org/10.1016/j.ceramint.2024.11.172

Zughbi A., Kharita M.H., Shehada A.M. (2017) Determining optical and radiation characteristics of cathode ray tubes' glass to be reused as radiation shielding glass. Radiation Physics and Chemistry, 136, 71-74. https://doi.org/10.1016/j.radphyschem.2017.02.035 DOI: https://doi.org/10.1016/j.radphyschem.2017.02.035

Sayyed M.I., Kaky K.M., Şakar E., Akbaba U., Taki M.M., Agar O. (2019) Gamma radiation shielding investigations for selected germanate glasses. Journal of Non-Crystalline Solids, 512, 33-40. https://doi.org/10.1016/j.jnoncrysol.2019.02.014 DOI: https://doi.org/10.1016/j.jnoncrysol.2019.02.014

Madbouly A.M., Alazab H.A., Borham E., Ezz-ElDin F.M. (2021) Study of gamma radiation dosimeter and radiation shielding parameters of commercial window glass. Applied Physics A, 127, 1-14. https://doi.org/10.1007/s00339-021-04889-9 DOI: https://doi.org/10.1007/s00339-021-04889-9

Shamshad L., Rooh G., Limkitjaroenporn P., Srisittipokakun N., Chaiphaksa W., Kim H. J., Kaewkhao J. (2017) A comparative study of gadolinium based oxide and oxyfluoride glasses as low energy radiation shielding materials. Progress in Nuclear Energy, 97, 53-59. https://doi.org/10.1016/j.pnucene.2016.12.014 DOI: https://doi.org/10.1016/j.pnucene.2016.12.014

Sayyed M.I., Mhareb M.H.A., Alajerami Y.S.M., Mahmoud K.A., Imheidat M.A., Alshahri F., Al-Abdullah T. (2021) Optical and radiation shielding features for a new series of borate glass samples. Optik, 239, 166790. https://doi.org/10.1016/j.ijleo.2021.166790 DOI: https://doi.org/10.1016/j.ijleo.2021.166790

Marltan W., Rao P.V., Klement R., Galusek D., Sayyed M. I., Tekin H.O., Veeraiah N. (2019) Spectroscopic and thermal analysis of lead-free multipurpose radiation shielding glasses. Ceramics International, 45(5), 5332-5338. https://doi.org/10.1016/j.ceramint.2018.11.231 DOI: https://doi.org/10.1016/j.ceramint.2018.11.231

Wu Y., Wang Z. (2024) Progress in ionizing radiation shielding materials. Advanced Engineering Materials, 26(21), 2400855. https://doi.org/10.1002/adem.202400855 DOI: https://doi.org/10.1002/adem.202400855

Mhareb M.H.A., Sayyed M.I., Hashim S., Alshammari M., Alhugail S., Aldoukhi H., Khandaker M.U. (2022) Radiation shielding features for a new glass system based on tellurite oxide. Radiation Physics and Chemistry, 200, 110094. https://doi.org/10.1016/j.radphyschem.2022.110094 DOI: https://doi.org/10.1016/j.radphyschem.2022.110094

Saeed A., El Shazly R.M., Elbashar Y.H., EL-AZM A.A., Comsan M.N. H., El-Okr M. M., Kansouh W.A. (2021) Glass Materials in Nuclear Technology for Gamma Ray and Neutron Radiation Shielding: a Review. Nonlinear Optics, Quantum Optics: Concepts in Modern Optics, 53, 107–159. Available at: https://www.researchgate.net/publication/376409782

Kilicoglu O., Akman F., Ogul H., Agar O., Kara U. (2023) Nuclear radiation shielding performance of borosilicate glasses: Numerical simulations and theoretical analyses. Radiation Physics and Chemistry, 204, 110676. https://doi.org/10.1016/j.radphyschem.2022.110676 DOI: https://doi.org/10.1016/j.radphyschem.2022.110676

Alalawi A., Al-Buriahi M.S., Sayyed M.I., Akyildirim H., Arslan H., Zaid M.H.M., Tonguç B.T. (2020) Influence of lead and zinc oxides on the radiation shielding properties of tellurite glass systems. Ceramics International, 46(11), 17300-17306. https://doi.org/10.1016/j.ceramint.2020.04.017 DOI: https://doi.org/10.1016/j.ceramint.2020.04.017

Singh V.P., Badiger N.M., Kaewkhao J. (2014) Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. Journal of non-crystalline solids, 404, 167-173. https://doi.org/10.1016/j.jnoncrysol.2014.08.003 DOI: https://doi.org/10.1016/j.jnoncrysol.2014.08.003

Cheewasukhanont W., Limkitjaroenporn P., Kothan S., Kedkaew C., Kaewkhao J. (2020) The effect of particle size on radiation shielding properties for bismuth borosilicate glass. Radiation Physics and Chemistry, 172, 108791. https://doi.org/10.1016/j.radphyschem.2020.108791 DOI: https://doi.org/10.1016/j.radphyschem.2020.108791

Abdelghany Y.A., Kassab M.M., Radwan M.M., Abdel-Latif M.A. (2022) Borotellurite glass system doped with ZrO2, potential use for radiation shielding. Progress in Nuclear Energy, 149, 104256. https://doi.org/10.1016/j.pnucene.2022.104256 DOI: https://doi.org/10.1016/j.pnucene.2022.104256

Imheidat M.A., KhHamad M., Naseer K.A., Sayyed M.I., Dwaikat N., Cornish K., .. Mhareb M.H.A. (2022) Radiation shielding, mechanical, optical, and structural properties for tellurite glass samples. Optik, 268, 169774. https://doi.org/10.1016/j.ijleo.2022.169774 DOI: https://doi.org/10.1016/j.ijleo.2022.169774

Temir A., Zhumadilov K.S., Zdorovets М.V., Kozlovskiy A., Trukhanov A.V. (2021) Study of the effect of doping CeO2 in TeO2–MoO–Bi2O3 ceramics on the phase composition, optical properties and shielding efficiency of gamma radiation. Optical Materials, 115, 111037. https://doi.org/10.1016/j.optmat.2021.111037 DOI: https://doi.org/10.1016/j.optmat.2021.111037

Alpyssova G.K., Denisov I.P., Bakiyeva Z.K., Kaneva E.V., Domarov E.V., Tussupbekova A.K. (2024) Dependence of the Radiation Synthesis Efficiency of Ceramics Based on Tungstates on the Flow Power. Bulletin of the Karaganda University" Physics Series", 11629(4), 9-19. https://doi.org/10.31489/2024ph4/9-19 DOI: https://doi.org/10.31489/2024ph4/9-19

Belli P., Bernabei R., Borovlev Y.A., Cappella F., Caracciolo V., Cerulli R., Shlegel V.N. (2022) Optical, luminescence, and scintillation properties of advanced ZnWO4 crystal scintillators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1029, 166400. https://doi.org/10.1016/j.nima.2022.166400 DOI: https://doi.org/10.1016/j.nima.2022.166400

Nguyen T. N., Thong H.C., Zhu Z.X., Nie J.K., Liu Y.X., Xu Z., Wang K. (2021) Hardening effect in lead-free piezoelectric ceramics. Journal of Materials Research, 36, 996-1014. https://doi.org/10.1557/s43578-020-00016-1 DOI: https://doi.org/10.1557/s43578-020-00016-1

Alzahrani J.S., Alrowaili Z.A., Olarinoye I.O., Sriwunkum C., Kebaili I., Al-Buriahi M.S. (2025) Gamma-radiation insulating performance of AlON-hardened Na2O–Bi2O3–SiO2–BaO–Fe2O3–ZrO2 glasses. Scientific Reports, 15(1), 6537. https://doi.org/10.1038/s41598-025-90902-7 DOI: https://doi.org/10.1038/s41598-025-90902-7

Sayyed M.I. (2025) Modulation of optical, mechanical and radiation shielding characteristics in TeO₂-B2O3–BaO–CeO₂ glasses with varying CeO₂ level. Optical Materials, 158, 116492. https://doi.org/10.1016/j.optmat.2024.116492 DOI: https://doi.org/10.1016/j.optmat.2024.116492

Almuqrin A.H., Sayyed M.I., Elsafi M. (2025) Experimental investigation for radiation shielding performance of B2O3-TeO2-Bi2O3-ZnO-CaO glass system. Annals of Nuclear Energy, 215, 111276. https://doi.org/10.1016/j.anucene.2025.111276 DOI: https://doi.org/10.1016/j.anucene.2025.111276

Al Huwayz M., Almuqrin A.H., Alharbi F.F., Sayyed M.I., Albarzan B. (2025) Unveiling the potential of Nd2O3 in optimizing the radiation shielding performance of B2O3–TiO2–BaO–ZnO-Nd2O3 glasses. Nuclear Engineering and Technology, 57(1), 103135. https://doi.org/10.1016/j.net.2024.08.004 DOI: https://doi.org/10.1016/j.net.2024.08.004

Ruiz E.L. (2024) Radiation shielding analysis of barium-titanium-borate glasses doped with zinc oxide. Nexus of Future Materials, 1, 584050. https://doi.org/10.70128/584050 DOI: https://doi.org/10.70128/584050

Alawaideh S.E.L., Sayyed M.I., Mahmoud K.A., Hanfi M., Imheidat M.A., Kaky K.M., Elsafi M. (2024) Effect of different metal oxides on the Radiation shielding features of borate glasses. Radiation Physics and Chemistry, 220, 111720. https://doi.org/10.1016/j.radphyschem.2024.111720 DOI: https://doi.org/10.1016/j.radphyschem.2024.111720

Alvyanti F.A., Marzuki A., Purwanto H., Lathifah N., Fausta D.E., Rahmawati A.N., Ariyanti S. (2024) Properties of Gamma Ray Shielding Ho/Nd Codoped Tellurite Glasses. Key Engineering Materials, 993, 25-34. https://doi.org/10.4028/p-2BlYr2 DOI: https://doi.org/10.4028/p-2BlYr2

Kurudirek M. (2017) Heavy metal borate glasses: potential use for radiation shielding. Journal of Alloys and Compounds, 727, 1227-1236. https://doi.org/10.1016/j.jallcom.2017.08.237 DOI: https://doi.org/10.1016/j.jallcom.2017.08.237

Kurtulus R. (2024) Recent developments in radiation shielding glass studies: a mini-review on various glass types. Radiation Physics and Chemistry, 220, 111701. https://doi.org/10.1016/j.radphyschem.2024.111701 DOI: https://doi.org/10.1016/j.radphyschem.2024.111701

Downloads

Published online

2025-09-30

How to Cite

Kozlovskiy, A., Borgekov, D., Tleulessova, I., Zhumazhanova, A., Moldabayeva, G., Burkhanov, B., & Khametova, A. (2025). EVALUATION OF THE APPLICATION EFFICIENCY OF MULTICOMPONENT CERAMICS AS PROTECTIVE SHIELDING AND THERMAL BARRIER MATERIALS. Eurasian Physical Technical Journal, 22(3 (53), 24–35. https://doi.org/10.31489/2025N3/24-35

Issue

Section

Materials science

Most read articles by the same author(s)

Loading...