THERMODYNAMIC AND ELECTROPHYSICAL PROPERTIES OF A NEW SEMICONDUCTOR BASED ON OXIDES OF RARE-EARTH AND TRANSITION METALS

THERMODYNAMIC AND ELECTROPHYSICAL PROPERTIES OF A NEW SEMICONDUCTOR BASED ON OXIDES OF RARE-EARTH AND TRANSITION METALS

Authors

DOI:

https://doi.org/10.31489/2025N3/36-47

Keywords:

manganite, lanthanum, zirconium, sodium, heat capacity, thermodynamic functions, еlectrophysics

Abstract

The study focuses on the investigation of a new compound that combines the properties of manganites and zirconates, paving the way for the development of highly efficient functional materials. The compound was synthesized through the interaction of lanthanum oxide, zirconium oxide, manganese oxide, and sodium carbonate at temperatures ranging from 800 to 1200 °C and studied using X-ray analysis methods, including the determination of cubic lattice parameters. The analysis of the temperature dependence of heat capacity revealed second-order phase transitions, based on which equations describing its variations were derived. Thermodynamic characteristics such as entropy and enthalpy were calculated. Electrophysical measurements confirmed the semiconductor nature of the material within a specific temperature range and revealed high values of dielectric permittivity, surpassing those of reference materials.

References

Karpasyuk V.K., Smirnov A.M., Badelin A.G. (2015) Features of constructing magnetic field sensors based on the colossal magnetoresistance effect. Caspian Journal: Management and High Technologies, 4, 291 – 297. [in Russian]. Available at: https://hi-tech.asu-edu.ru/files/4(32)/291-297.pdf

Menglei Li, Hengxin Tan, Wenhui Duan (2020) Hexagonal rare-earth manganites and ferrites: a review of improper ferroelectricity, magnetoelectric coupling, and unusual domain walls. Phys. Chem. Chem. Phys., 22, 14415 – 14432. https://doi.org/10.1039/D0CP02195D DOI: https://doi.org/10.1039/D0CP02195D

Yang Shen, Ce-Wen Nan. (2023) High thermal conductivity dielectric polymers show record high capacitive performance at high temperatures. National Science Review, 10 (11), nwad224. https://doi.org/10.1093/nsr/nwad224 DOI: https://doi.org/10.1093/nsr/nwad224

Chabushkin A.N., Lyapin A.A., Ryabochkina P.A., Antipov O.L., Artemov S.A., Lomonova E.E. (2018) CW and Q-switched 2 m solid-state laser on ZrO2–Y2O3–HO crystals pumped by a Tm fiber laser. Laser Phys, 28 (3), 035803. https://doi.org/10.1088/1555-6611/aa962f DOI: https://doi.org/10.1088/1555-6611/aa962f

Zhirenkinа N.V. (2022) Technology of Powder Synthesis Based on Zirconium Dioxide for the Production of High-Density Ceramics. 2.6.14. Technology of Silicate and Refractory Nonmetallic Materials. Dissertation for the Degree of Candidate of Technical Sciences. Yekaterinburg, 159.

Arachi Y., Sakai H., Yamamoto O., Takeda Y., Imanishai N. (1999) Electrical conductivity of the ZrO2–Ln2O3 (Ln=lanthanides) system. Solid State Ionics, 121, 1-4, 133 –139. https://doi.org/10.1016/s0167-2738(98)00540-2 DOI: https://doi.org/10.1016/S0167-2738(98)00540-2

Borik M.A, Bublik V.T., Kulebyakin A.V., Lomonova E.E., Milovich F.O., Myzina V.A., Osiko V.V., Tabachkova N.Y. (2014) Phase composition, structure and mechanical properties of PSZ (partially stabilized zirconia) crystals as a function of stabilizing impurity content. Alloys and Compounds, 586, 231 – 235. https://doi.org/10.1016/j.jallcom.2013.01.126 DOI: https://doi.org/10.1016/j.jallcom.2013.01.126

Zadorozhnaya O.Y., Napochatov Y.K., Agarkova E.A., Tiunova O.V. (2020) Layered sold-electrolyte membranes based on zirconia: production technology. Russian Journal of Electrochemistry, 56 (2), 124 – 131. https://doi.org/10.1134/S1023193520020123 DOI: https://doi.org/10.1134/S1023193520020123

Aktas B., Tekeli S., Kucuktuvek M. (2014) Electrical Conductivity of Er2O3-Doped c-ZrO2 Ceramics. J. of Materi Eng and Perform, 23, 349–355. https://doi.org/10.1007/s11665-013-0750-5 DOI: https://doi.org/10.1007/s11665-013-0750-5

Borik M.A., Volkova T.V., Kulebyakin A.V., Kuritsyna I.E., Lomonova E.E., Myzina V.A., Milovich F.O., Ryabochkina P.A., Tabachkova N.Yu., Zentsova A.I., Popov P.A. (2020) Thermal Conductivity of Cubic ZrO2 Single Crystals Stabilized with Yttrium Oxide. Physics of the Solid State, 62, 1, 235 – 239. https://doi.org/10.1134/ s1063783420010072 DOI: https://doi.org/10.1134/S1063783420010072

Guskov V.N. Gavrichev K.S. Gagarin P.G., Guskov A.V. (2019) Thermodynamic Functions of Complex Zirconia Based Lanthanide Oxides-Pyrochlores Ln2Zr2O7 (Ln = La, Pr, Sm, Eu, Gd) and Fluorites Ln2O3·2ZrO2 (Ln = Tb, Ho, Er, Tm). Russ. J. Inorg. Chem, 64, 10, 1265 - 1281. https://doi.org/10.1134/S0036023619100048 DOI: https://doi.org/10.1134/S0036023619100048

Stroeva A.Yu., Vorotnikov V.A., Bervitskaya O.S., Ichetovkinа V.A., Ichetovkin Z.N., Duvakin A.M., Ananchenko B.A., Kuzmin A.V. (2024) The effect of synthesis technique on the microstructure of doped lanthanum zirconate materials. Electrochemical Energetics, 24, 4, 185 - 190. [in Russian]. https://doi.org/10.18500/1608-4039-2024-24-4-185-190 DOI: https://doi.org/10.18500/1608-4039-2024-24-4-185-190

Proshkin S. (2018) Multipurpose calorimeter to measure thermophysical properties ARPN Journal of Engineering and Applied Sciences, 2018, 13, 5, 1827 – 1832.

Bychinskii V.A., Tupitsyn A.A., Mukhetdinova A.V., Chudnenko K.V., Fomichev S.V., Krenev V.A. (2013) Estimation of the heat capacity of individual substances on the basis of experimental enthalpy increments. Russian Journal of Inorganic Chemistry, 58(9), 1079 – 1084. https://doi.org/10.1134/s0036023613090040 DOI: https://doi.org/10.1134/S0036023613090040

Rustembekov K.T., Sharipova Z.M., Dyusekeeva A.T. (2012) Thermochemistry of selenates of some s- d- elements. Journal of international Scientific Publications: Materials, Methods & Technologies, 6, 286 - 295. Available at: https://www.scientific-publications.net/download/materials-methods-and-technologies-2012-2.pdf

Bodryakov V.Yu., Bykov A.A. (2015) Correlation characteristics of the temperature coefficient of volumetric expansion and heat capacity of corundum. Glass and ceramics, 2, 30. [in Russian]. https://doi.org/10.1007/s10717-015-9726-2 DOI: https://doi.org/10.1007/s10717-015-9726-2

Kassenov B.K., Kassenova Sh.B., Sagintaeva Zh.I., Kuanyshbekov E.E., Turtubaeva M.O. (2020) Calorimetric Research into the Heat Capacity of Novel Nano-sized Cobalt(Nickelite)-Cuprate-Manganites of LaBaMeIICuMnO6 (MeII= Co, Ni) and their Thermodynamic Properties. Eurasian Chemico-Technological Journal, 22, 27 – 33. https://doi.org/10.18321/ectj927 DOI: https://doi.org/10.18321/ectj927

Rustembekov K.T., Kasymova M.S., Kaikenov D.A., Fomin V.N., Aldabergenova S.K., Toybek A.A. (2019) Calorimetry of new double dysprosium tellurite. Bulletin of Karaganda university. Chemistry series, 93, 1, 60 – 65. https://doi.org/10.31489/2019ch1/60-65 DOI: https://doi.org/10.31489/2019Ch1/60-65

Kasenova Sh.B., Sagintaeva Zh.I., Kasenov B.K., Ermaganbetov K.T., Kuanyshbekov E.E., Seisenova A.A., Smagulova D.I. (2013) Calorimetry and thermodynamic properties of nanostructured cuprate-manganite of lanthanum and strontium LaSr2CuMnO6. News of NAS RK. Chemical sciences series, 401, 5, 85 - 89. [in Russian]. Available at: https://nauka.kz/page.php?page_id=964&new&page=7845

Kasenov B.K., Kasenova Sh. B., Sagintaeva Zh.I., Kuanyshbekov E.E., Nuhuly A. Heat capacity of the new nano-size cobalt-cuprato-manganite LaLi2CoCuMnO6 in the interval of 298.15-673 K and its thermodynamic properties. Applied solid state Chemistry, 2018, 5 (4), 82-85. https://doi.org/10.18572/2619-0141-2018-4-5-82-85 DOI: https://doi.org/10.18572/2619-0141-2018-4-5-82-85

Rustembekov K., Dyusekeyeva A., Sharipova Z., Amanzhan A. (2012) Syntesis and thermochemistry of new metal-mixed tellurites. Chemical Bulletin of Kazakh National University, 65(1), 170-174. https://doi.org/10.15328/chemb_2012_1170-174 DOI: https://doi.org/10.15328/chemb_2012_1170-174

Kasenov B., Kasenova S., Sagintaeva Z., Kuanyshbekov E., Bekturganov Z., Zeynidenov A. (2022) Electrophysical properties of new nanostuctured copper-zinc manganite of lanthanum and magnesium. Eurasian Physical Technical Journal, 2022, 19(2(40), 42–47. https://doi.org/10.31489/2022No2/42-47 DOI: https://doi.org/10.31489/2022No2/42-47

Operation Manual. RLC meter (LCR-781). Moscow: PriST CJSC, 2012, 3 [in Russian]. Available at: https://prist.ru/upload/iblock/5a9/zv6bz0pv1oji5hdghyqzf8jwi26uaizw/Izmeritel-LCR_78200_5-mod._.pdf

Al Jaafari F.M.D., Korotkov L.N., Tolstykh N.A., Emelianov N.A., Pankova M.A., Popov S.V. (2023) Dielectric properties of mixed BaTiO3–SrTiO3 nanocomposites. Bulletin of the Russian Academy of Sciences: Physics, 87, 9, 1302 - 1307. https://doi.org/10.3103/S1062873823703197 DOI: https://doi.org/10.3103/S1062873823703197

Dikov R.V. (2022) Study of the Electrophysical Properties of Ferroelectric Piezo-Ceramics Based on Barium Titanate. Dissertation for the Degree of Candidate of Physical and Mathematical Sciences. 1.3.5. Physical Electronics. Volgograd, 128. [in Russian]. Available at: https://www.vstu.ru/upload/iblock/67e/67e5be44aa5e9d2ed1fecbb761609f3a.pdf

Wang J.J., Meng F.Y., Ma X.Q., Xu M.X., Chen L.Q. (2010) Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles J. Appl. Phys. 108, 034107. https://doi.org/10.1063/1.3462441 DOI: https://doi.org/10.1063/1.3462441

Mataev M., Madiyarova A., Patrin G., Abdraimova M., Nurbekova M. Durmenbayeva Zh. (2024) Synthesis of New Complex Ferrite Li0.5MnFe1.5O4: Chemical-Physical and Electrophysical Research, Materials, 17, 3754. https://doi.org/10.3390/ma17153754 DOI: https://doi.org/10.3390/ma17153754

Kasenov B.K., Kasenova Sh.B., Sagintaeva Zh.I., Kuanyshbekov E.E., Mukhtar A.A. (2022) Thermodynamic and Electrophysics of New LaCaCuZnMnO6 Copper – Zinc Manganite of Lanthanum and Calcium. High Temperature, 60, 4, 474 - 478. https://doi.org/10.1134/S0018151X22020225 DOI: https://doi.org/10.1134/S0018151X22020225

Guo G., Goldfeder J., Lan L., Ray A., Hanming Yang A., Chen B., J. L. Billinge S., Lipson H. (2024) Towards end-to-end structure determination from x-ray diffraction data using deep learning. npj Comput Mater, 10, 209. https://doi.org/10.1038/s41524-024-01401-8 DOI: https://doi.org/10.1038/s41524-024-01401-8

Turdiyev M.T., Kasenov B.K., Nukhuly A., Stoev M., Sagintaeva Zh.I., Kasenova Sh.B., Kuanyshbekov E.E. (2024) New zircon-manganites of lanthanum and alkali metals. Chemical Bulletin of Kazakh National University, 111, 1-2, 23 - 27. https://doi.org/10.15328/cb1372 DOI: https://doi.org/10.15328/cb1372

Viana, M,. Jouannin P., Pontier C., Chulia D. (2002) About pycnometric density measurements. Talanta, 57(3), 583 – 593. https://doi.org/10.1016/S0039-9140(02)00058-9 DOI: https://doi.org/10.1016/S0039-9140(02)00058-9

Hemminger W., Höhne G. (1984) Calorimetry: Fundamentals and Practice. Weinheim: Verlag Chemie, 310 p.

Goldenfeld N. Lectures on Phase Transitions and the Renormalization Group. CRC Press, Taylor & Francis Group, 1992. eBook published 2018. 420 p. https://doi.org/10.1201/9780429493492 DOI: https://doi.org/10.1201/9780429493492

Xue Y., Shen Z., Wu Z., Song C. (2023) Thickness dependence of the critical temperature and magnetic coupling in multilayer Cr₂Sn₂Te₆. Physical Review B., 108, 064416. https://doi.org/10.1103/PhysRevB.108.064416 DOI: https://doi.org/10.1103/PhysRevB.108.064416

Melchakova O.V., Zaitseva P.V., Mayorova A.V., Kulikova T.V., Pechishcheva N.V., Shunyaev K.Yu. (2019) Calculation of the Thermodynamic Properties of Metal Perrhenates and Their Use in Modeling Sample Preparation for Chemical Analysis. Analytics and Control, 23, 4, 570 – 579. https://doi.org/10.15826/analitika.2019.23.4.015 [in Russian]. DOI: https://doi.org/10.15826/analitika.2019.23.4.015

Downloads

Published online

2025-09-30

How to Cite

Turdiyev, M., Kasenov, B., Nukhuly, A., Bekturganov, Z., Kasenova, S., Sagintaeva, Z., & Kuanyshbekov, E. (2025). THERMODYNAMIC AND ELECTROPHYSICAL PROPERTIES OF A NEW SEMICONDUCTOR BASED ON OXIDES OF RARE-EARTH AND TRANSITION METALS. Eurasian Physical Technical Journal, 22(3 (53), 36–47. https://doi.org/10.31489/2025N3/36-47

Issue

Section

Materials science

Most read articles by the same author(s)

Loading...