A NOVEL DESIGN OF AN ENERGY ANALYZER FOR CHARGED PARTICLES BASED ON A NON-UNIFORM ELECTROSTATIC FIELD
DOI:
https://doi.org/10.31489/2025N3/148-155Keywords:
energy analyzer, non-uniform field, multipole, modeling, charged particle beamsAbstract
A new design for an energy analyzer based on an axial symmetric non-uniform field has been proposed. Using the superposition method of a cylindrical field and second-type axially dodecapole, the electron-optical scheme for the energy analyzer has been developed. Numerical modeling of the electron-optical scheme of the device was performed, and its analytical characteristics were obtained. It is shown that the proposed design combines high resolution and effective luminosity. The results confirm the feasibility of using the developed device for studying charged particle beams in outer space.
References
Zashkvara V.V., Ashimbaeva B.U. (1998) Сylindrical mirror analyzer with adjustable angular focusing. Journal of Electron Spectroscopy and Rel. Phen., 94, 89 – 96. DOI: https://doi.org/10.1016/S0368-2048(97)00093-5
Shugayeva T.Zh., Spivak-Lavrov I.F., Amantaeva A.Sh. (2025) Gridless Cylindrical Mirror Energy Analyzer for Electron Spectroscopy. J. Phys.: Conf. Ser., 2984, 012030, https://doi.org/10.1088/1742-6596/2984/1/012030 DOI: https://doi.org/10.1088/1742-6596/2984/1/012030
Kazama Y., Wang B.J., Wang S.Y., et al. (2017) Low-energy particle experiments-electron analyzer (LEPe) onboard the Arase spacecraft. Earth Planets Space, 69, 165. https://doi.org/10.1186/s40623-017-0748-6 DOI: https://doi.org/10.1186/s40623-017-0748-6
Ambrosi G., et al. (2019) The Penetrating particle ANalyzer (PAN) instrument for measurements of low energy cosmic rays. IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 1-8. https://doi.org/10.1109/NSS/MIC42101.2019.9059946 DOI: https://doi.org/10.1109/NSS/MIC42101.2019.9059946
MacDonald E.A., Funsten H.O., Dors E.E., Thomsen M.F., et al. (2009) New Magnetospheric Ion Composition Measurement Techniques. AIP Conf. Proc., 16, 1144 (1): 168–172. https://doi.org/10.1063/1.3169283 DOI: https://doi.org/10.1063/1.3169283
Ilyin A.M., Ilyina I.A. (2014) High-resolving electrostatic charged particles energy analyzer with fine tuning for space investigations. Journal of Instrumentation, 9, P08005. https://doi.org/10.1088/1748-0221/9/08/P08005 DOI: https://doi.org/10.1088/1748-0221/9/08/P08005
Amerl P.V., Yau A.W. (2005) Towards the miniaturization of a space-borne electrostatic energy analyzer: the miniature enhanced geometry electrostatic analyzer (MEGEA). International Conference on MEMS, NANO and Smart Systems, 139-142. https://doi.org/10.1109/ICMENS.2005.128 DOI: https://doi.org/10.1109/ICMENS.2005.128
Keller J.W., Chornay D.J., Hunsaker F.H., et al. (1999) Gated time-of-flight plasma composition analyzer for space physics research. Rev. Sci. Instrum., 70 (7), 3167–3172. https://doi.org/10.1063/1.1149881 DOI: https://doi.org/10.1063/1.1149881
Nicolaou G., Haythornthwaite R.P., Coates A.J. (2022) Resolving Space Plasma Species with Electrostatic Analyzers. Front. Astron. Space Sci., 9, 861433. https://doi.org/10.3389/fspas.2022.861433 DOI: https://doi.org/10.3389/fspas.2022.861433
Gershman D.J., Avanov L.A., Collinson G., Tucker C.J., Barrie A., Chornay D.J., Paschalidis N.P., Rowland D., Moore T.E. (2023) A Gated Time-of-Flight Top-Hat Electrostatic Analyzer for Low Energy Ion Measurements. Rev. Sci. Instrum., 94, 083304. https://doi.org/10.1063/5.0139022 DOI: https://doi.org/10.1063/5.0139022
Spivak-Lavrov I.F. (2016) Analytical methods for the calculation and simulation of new schemes of static and time-of-flight mass spectrometers. Adv. Imaging Electron Phys., 193, 45–128. https://doi.org/10.1016/bs.aiep.2015.10.001 DOI: https://doi.org/10.1016/bs.aiep.2015.10.001
Zashkvara V.V., Tyndyk N.N. (1992) Axially symmetric multipole in magnetic analyzers. Nuclear Instruments & Methods in Physics Research. Section A, A321, 439-446. DOI: https://doi.org/10.1016/0168-9002(92)90052-6
Zashkvara V.V., Ashimbaeva B.U., Chokin K.Sh. (2002) Calculation of trajectories in a multipole cylindrical field. Journal of Electron Spectroscopy and Rel.Phen., 122, 195-202. DOI: https://doi.org/10.1016/S0368-2048(01)00346-2
Kambarova Zh.T., Saulebekov A.O., Trubitsyn A.A. (2022) The All-sky Spectrometer of Hot Cosmic Plasma. The Astronomical Journal, 164 (2), 47 (1-10). https://doi.org/10.3847/1538-3881/ac7561 DOI: https://doi.org/10.3847/1538-3881/ac7561
Kambarova Zh.T., Saulebekov A.O., Kopbalina K.B., Tussupbekova A.K., Saulebekova D.A. (2021) About the possibility of creating an efficient energy analyzer of charged particle beams based on axially-symmetric octupole-cylindrical field. Eurasian Physical Technical Journal, 18(2), 96–102. https://doi.org/10.31489/2021No2/96-102 DOI: https://doi.org/10.31489/2021No2/96-102
Kambarova Zh.T., Trubitsyn A.A., Saulebekov А.О. (2018) Axially symmetric energy analyzer based on the electrostatic decapole-cylindrical field. Technical Physics, 63, 11, 1667–1671. https://doi.org/10.1134/S1063784218110142 DOI: https://doi.org/10.1134/S1063784218110142
Sautbekova, Z.S., Trubitsyn, A.A. (2022) FOCUS CPM Software for trajectory analysis of real axially symmetric electrostatic mirrors: Methods and Algorithms. Eurasian Physical Technical Journal, 19(3), 91–96. https://doi.org/10.31489/2022No3/91-96 DOI: https://doi.org/10.31489/2022No3/91-96
Downloads
Published online
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.












