DESIGN OF SOFTWARE DEFINED RADIO OF GROUND STATION FOR RECEIVING NANO-SATELLITES IMAGE DATA IN S-BAND
DOI:
https://doi.org/10.31489/2024No4/79-87Keywords:
ground station, software defined radio, nanosatellite, satellite antenna, field programmable gate arrays, coding, modulation, line communicationAbstract
This paper presents results for design, production and implementation of a ground station for transmitting and receiving information in the S-band for low-orbital nanosatellites for remote sensing of the Earth. A distinctive feature of the solution is that it uses universal low-cost Software Defined Radio hardware platforms based on programmable logic arrays and transceivers, such as the AD9361. Computational resources are saved by usage of a FIR filter with real coefficients and a carrier signal with a symmetrical impulse response, as well as a frequency converter using the CORDIC algorithm, which provides an efficient solution in terms of field programmable gate arrays resources. This work computes total and useful data transfer rates, as well as the required ratio of the energy of one message bit to the value of the power spectral density of the equivalent noise when used for encoding and modulation of a standard DVB-S2 MODCOD signal. Evaluation of the parameters of the Software Defined Radio field programmable gate arrays transceiver showed that it can be used in both the S and X frequency bands without significant changes in hardware, which can significantly reduce the cost of the ground station.
References
Liashkevich S.V., Saetchnikov V.A. (2021) SDR Based X-Band University Ground Station as Remote Sensing Technologies Learning Environment. Proceeding of the 8th International Workshop on Metrology for AeroSpace, IEEE Xplore, 127 – 131. DOI: 10.1109/MetroAeroSpace51421.2021.9511743.
Reinhart R., Lux J.P. (2014) Space-based reconfigurable software defined radio test bed aboard international space station. Proceeding of the “SpaceOps” conference, AIAA 2014-1612. DOI: 10.2514/6.2014-1612.
Ferreira P.V.R., Paffenroth R., Wyglinski A.M., Hackett T.M.; Sven G. Bilen S.G., Reinhart R.C. (2019) Reinforcement learning for satellite communications: From LEO to deep space operations. IEEE Communications Magazine, 57, 5, 70 – 75. DOI: 10.9/MCOM.2019.1800796.
Kozłowski S. (2018) A carrier synchronization algorithm for SDR-based communication with LEO satellite. Radioengineering, 27, 1, 299 – 306. DOI: 10.13164/re.2018.0299.
Ilco V., Levineț N., Gîrșcan., A. Margarint, A., Secrieru N. (2015) Satellite telemetry data reception and processing via software defined radio. Available at: http://repository.utm.md/handle/5014/2351.
Grayver E., Chin A., Hsu J., Stanev S., Kun D., Parower A. (2015) Software defined radio for small satellites. Proceeding of the IEEE Aerospace Conference, 1 – 9. DOI: 10.1109/AERO.2015.7118901.
Ceylan O., Caglar A., Tugrel H.B., Cakar O., Kislal A.O., Kula K., Yagci H. B. (2016) Satellites. IEEE icrowave magazine, 17, 3, 26 – 33. DOI: 10.1109/MMM.2015.2505700.
Guerra A.G.C., Ferreira A.S., Costa M., Nodar-Lopez D., Agelet F.A. (2018) Integrating ´ small satellite communication in an autonomous vehicle network: A case on oceanography. Acta Astronautica, 145, 229 – 237. DOI:10.1016/j.actaastro.2018.01.022.
Maheshwarappa M.R. (2016) Software defined radio (SDR) architecture for concurrent multisatellite communications. PhD dissertation. University of Surrey. Available at: https://openresearch.surrey.ac.uk/esploro/outputs/doctoral/Software-defined-radio-SDR-architecture-for/99511622502346.
Juang J.C., Tsai C.T., Miau J.J. (2008) A software-defined radio approach for the implementation of ground station receivers. In book: Small Satellites for Earth Observation, 293–298. DOI: 10.1007/978-1-4020-6943-7.
Quintana-Dıaz G., Birkeland R. (2018) Software-Defined Radios in Satellite Communications. Proceeding of the conference ESA 4S Symposium, Sorrento, Italy. Available at: https://www.researchgate.net/publication/330398017.
Ajith Kumar Joel, Pavan Kalyan Redd, Charan Yadav, Chandan M., Devanathan M. (2020) SDR Based Ground Station for Image Reception from Weather Satellites. International Journal of Advance Science and Technology, 29, No. 10S, 7694 – 7705. Available at: https://sersc.org/journals/index.php/IJAST/article/view/24092.
Velasco C., Tipantuña C. (2017) Meteorological picture reception system using software defined radio (SDR). Proceeding of the IEEE 2nd Ecuador Technical Chapters Meeting, 1-6. DOI: 10.1109/ETCM.2017.8247551.
Georgescu I., Angelescu N., Puchianu D.C., Predusca G., Circiumarescu L-D. (2021) Software defined radio applications-receiving and decoding images transmitted by weather satellites. Proceeding of the 13th Intern. Conf. on Electronics, Computers and Artificial Intelligence, 1 – 4. DOI: 10.1109/ECAI52376.2021.9515169.
Thabit A.A. (2020) Design and software implementation of radio frequency satellite link based on SDR under noisy channels. Telkomnika, 8, 6, 2852 - 2860. DOI: 10.12928/telkomnika.v18i6.16130.
Halté S., Chambon C., Rawson S., Dasgupita A., Neveux G., Barataud D. (2019) X-band sampling technology demonstration. Proceeding of the TTC 2019 - 8th ESA International Workshop on Tracking, Telemetry and Command Systems for Space Applications, IEEE Xplore. DOI: 10.1109/TTC.2019.8895295.
Chen W., Khan A.Q., Abid M., Ding S. (2011) Integrated design of observer-based fault detection for a class of uncertain nonlinear systems. International Journal of Applied Mathematics and Computer Science, 21(3), 423 – 430. DOI:10.2478/v10006-011-0031-0.
Pratt T., Bostian C., Allnutt J. Satellite Communications. Wiley, 560. Available at: https://books.google.com/ books/about/Satellite_Communications.h tml?id=IqFvngEACAAJ2002.
Larson W.J., Wertz A.V. (1992) Space Mission Analysis and Design. Springer, 976, 381 – 395. Available at: https://books.google.com/books/about/Space_Mission_Analysis_and_Design.html?id=QJanyiWfvXMC.
Benvenuto N., Cherubini G. (2002) Algorithms for Communications Systems and Their Applications. John Wiley & Sons. 508. Available at: https://lib.ysu.am/open_books/413038.pdf.
Joseph A. Shaw. (2013) Radiometry and the Friis transmission equation. Am. J. Phys., 81, 33 – 37. DOI:10.1119/1.4755780.
Downloads
Received
Revised
Accepted
Published online
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.