Optical systems for removal of polarization spectra

Optical systems for removal of polarization spectra

Authors

DOI:

https://doi.org/10.31489/2019No2/83-88

Keywords:

optical systems, anisotropic molecules, polarization, ultraviolet spectral area, quarter wave plate, sensitivity, optical density

Abstract

In the article optical systems are presented that are developed by the authors and have been used for many years to remove the polarization properties of anisotropic molecules. Both systems are designed for visible and close to ultraviolet spectral regions. In this case, the double Fresnel parallelepiped plays the role of an achromatic quarter of the wave plate. They are used in the Jasco-20 dichrograph after the Pockels cell. As a result, the sensitivity of the device increases from to of the value of the differences in optical density.

References

"1 Kasimova G.K., Astanov S., Kurtaliev E.N., Nizomov N. Structure of self-assembled riboflavin molecules in solutions. Journal of Molecular Structure. 2019, Vol.1185, pp. 107 – 111.

Astanov S.Kh., Sharipov M.Z., Fayzullaev A.R., Kurtaliev E.N., Nizomov N. Spectroscopic study of photo and thermal destruction of riboflavin. Journal of Molecular Structure. 2014, Vol.1071, pp.133–138.

Astanov S.Kh., Shamsiev R.Kh., Fayzullaev A.R. Food dyes (methods for stabilizing). Tashkent, Development of science and technology, 2014, pp.60 – 74.

Ahmad I., Ahmed S., Sheraz M.A., Vaid F. Effect of borate buffer on the photolysis of riboflavin in aqueous solution. J. Photochem. Photobiol. B: Biology. 2008, Vol. 93, pp. 82—87.

Ahmad I., Sheraz M.A., Ahmed S., Kazi S.H., Mirza T., Aminuddin M. Stabilizing effect of citrate buffer on the photolysis of riboflavin in aqueous solution. Res. Pharma Sci., 2011. Vol. 1, pp. 11—15.

Astanov S.Kh., Sharipov M.Z., Fayzullaev A.R., Kurtaliev E.N., Nizomov N. Thermal Destruction of Riboflavin in Different Aggregate States. Journal of Applied Spectroscopy 2014. Vol. 81(1), pp. 37 – 42.

Ahmad I., Fasihullah Q., Vaid F.H.M. A study of simultaneous photolysis and photoaddition reacti-ons of riboflavin in aqueous solution. J. Photochem and Photobiol. B: Biology 2004, Vol. 75, pp. 13 – 20.

Ahmad I., Fasihullah Q., Vaid F.H.M. Effect of phosphate buffer on photodegradation reactions of riboflavin in aqueous solution. J. Photochem and Photobiol. B: Biology 2005, Vol. 78, pp. 229 – 234.

Sheraz M.A., Kazi S.H., Ahmed S., Anwar Z., Ahmad I. Photo, thermal and chemical degradation of riboflavin. Beilstein Journal of organic chemistry. 2014, Vol.10, pp.1999 – 2012.

Ching-Yi Wu, Yu-Chie Chen. Riboflavin immobilized Fe3O4 magnetic nanoparticles carried with n-butylidenephthalide as targeting-based anticancer agents. Artificial cells, nanomedicine, and biotechnology. 2019, Vol. 47, No. 1, 210–220.

Astanov S.Kh., Kosimova G.K., Turdiev M.R. Spectroscopic displays of self-assembly of tartrazine food dye. Journal Development of science and technology. 2017, No.3, pp. 93.

Kubo Y., Yahata Sh., Miki S., Akanuma Sh., et al. Blood-to-retina transport of riboflavin via RFVTs at the inner blood-retinal barrier. Drug Metabolism and Pharmacokinetics. 2017. Vol. 32(1), pp. 92 – 99.

Lebedev-Stepanov P.V., Kadushnikov R.M., Molchanov S.P., Ivanov A.A., Mitrokhin V.P., et al. Self-assembly of nanoparticles in the microvolume of colloidal solution: Physics, modeling, and experiment. Nanotechnologies in Russia. 2013, Vol. 8, Issue 3–4, pp. 137 – 162.

Williamson G., Edmondson D. E. NMR spectral analysis of the ribityl side chain of riboflavin and its ring-substituted analogs. Methods in Enzymology. 1986, Vol.122, pp. 240 – 248.

Astanov S.Kh., Sharipov M.Z., Kasimova G.K. Hipochromic effect in riboflavin solutions. Eurasian Physical Technical Journal, 2019, Vol.16, No.1(31), pp. 12 – 17.

Brzezinska E., Mielczarek C., Pajak W. Analysis of acid-base properties of riboflavin calculated via semi-empirical methods. Acta Poloniae Pharmaceutica. 2008, Vol. 65 (1), pp. 59 – 63.

Klaumünzer B., Kröner D., Saalfrank P. (TD-)DFT Calculation of Vibrational and Vibronic Spectra of Riboflavin in Solution. J. Phys. Chem. B. 2010, Vol. 114 (33), pp. 10826 – 10834.

Wellus L., Legrand M., Grosjean M. Optical circular dichroism. Moscow, Astanov S.H., Kasimova G.K., Sharipov M.Z. Theoretical and experimental aspects of the application of polarization spectra in the study of photonics of self-aggregated molecules. Monograph. Tashkent. 2019, pp. 53-59.

Lebedev-Stepanov P.V., Kadushnikov R.M., et al. Simulation of self-assembly of micro- and nanoparticles in an evaporating microdrop of solution. Russian nanotechnologies. 2011, Vol. 6, Issue 1–2, pp 79–87.

P.J.Keller, Q.L.Van. A.Bacher, H.G. Floss. Biosynthesis of riboflavin: C-NMR techniques for the analysis of multiply C-labeled riboflavins. Tetrahedron. 1983, Vol. 39, No. 21, pp. 3471 – 3481.

Astanov S.Kh., Prishchepov A.S., Niyazkhanova B.E. Spectral-optical properties of indigo carmine and tartrazine associates in solutions. Journal of Applied spectr. 1990, Vol. 53, No. 5, pp. 800 – 806.

"

Downloads

How to Cite

Astanov, S., Kasimova, G., & Sharipov, M. (2019). Optical systems for removal of polarization spectra. Eurasian Physical Technical Journal, 16(2(32), 83–88. https://doi.org/10.31489/2019No2/83-88

Issue

Section

Engineering
Loading...