ELECTRICAL PROPERTIES OF QUANTUM NANOWIRES.
Keywords:
nanostructure, morphology, fractal dimension, current-voltage characteristics, semiconductorAbstract
In the present work we suggest equations for the description of electrical conductivity of semiconductor quantum nanowires. By use of these equations we explain such features of their current-voltage characteristics as existence of areas with negative differential resistance as well as oscillating behavior of the curves. We take into account scale-invariant, hierarchically self-similar, fractal structure of nanostructures. We consider that quantum nanowires form fractal clusters at their interaction. Electrical potential of these structures can be described as a fractal measure. Theoretical results are confirmed by specific experimental results on study of electrical properties of nanocluster semiconductors.
References
"1 Gonchar K.A., Osminkina L.A., Galkin R.A., Gongalsky M.B., Marshov V.S., Timoshenko V.Yu., Kulmas M.N., SolovyevV.V., Kudryavtsev A.A., SivakovV.A.. Growth, Structure and Optical Properties of Silicon Nanowires Formed by Metal-Assisted Chemical Etching. Journal of Nanoelectronics and Optoelectronics. 2012, Vol. 7, No 6, pp. 602-606.
Bunkov K.V., Golovan L.A., Gonchar K.A., Timoshenko V.Yu., Kashkarov P.K., Kulmas M., Sivakov V. Dependence of Raman scattering efficiency in silicon nanowire arrays on excitation wavelength. Semiconductors.2013, Vol. 47, No 3, pp. 354-357.
Artoni P., Irrera A., Iacona F., Pecora E.F., Franzò G., Priolo F. Temperature dependence and aging effects on silicon nanowires photoluminescence. Optics Express.2012, Vol. 20, No. 2, pp. 1483-1490.
Zhanabaev Z.Zh., Grevtseva T.Yu., Danegulova T.B., Assanov G.S. Optical Processes in Nanostructured Semiconductors. Journal of Computational and Theoretical Nanoscience. 2013, Vol. 10, No 3, pp. 673-678.
Zhanabaev Z.Zh., Grevtseva T.Yu. Physical Fractal Phenomena in Nanostructured Semiconductors. Reviews in Theoretical Science. 2014, Vol. 2, No 3, pp. 211-259.
Zhanabaev Z.Zh., GrevtsevaT.Yu., Ibraimov M.K. Morphology and Electrical Properties of Silicon Films with Vertical Nanowires. Journal of Computational and Theoretical Nanoscience. 2016, Vol. 13, pp. 615-618.
Zhanabaev Z.Zh., Timoshenko V.Yu., Turmukhambetov A.Zh., Grevtseva T.Yu., Assilbayeva R.B. Structure of porous silicon films. Eurasian Physical Technical Journal.2017, Vol. 14, No 1(27), pp. 30-33.
Landauer R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM Journal.1957, No 6, pp. 223-231.
Nutku F., Donmez O., Cokduygulular E., Sarcan F., Kuruoglu F., Mutlu S., Yildirim S., Erol A. Effect of thermal annealing and nitrogen composition on quantum transport in GaInNAs alloy based modulation doped quantum well structures.Journal of Alloys and Compounds. 2017, Vol. 695, pp. 404-409.
Lancaster T., Pexton M. Reduction and emergence in the fractional quantum Hall state. Studies in History and Philosophy of Modern Physics. 2015, Vol. 52, pp. 343-357.
Peng X., Yang Y., Hou Y., Travaglini H.C., Hellwig L., Hihath S., K. van Benthem, Lee K., Liu W., Yu D. Efficient and Hysteresis-Free Field Effect Modulation of Ambipolarly Doped Vanadium Dioxide Nanowires. Physical Review Applied. 2016, Vol. 5, pp.1-9.
Alexander-Webber J.A., Groschner C.K., Sagade A.A., Tainter G., Gonzalez-Zalba M.F., R. Di Pietro, Wong-Leung J., Tan H.H., Jagadish Ch., Hofmann S., Joyce H.J. Engineering the Photoresponse of InAs Nanowires. Applied Materials & interfaces. 2017, Vol. 9, pp. 43993-44000.
Rajeev K.P., Opoku C., Stolojan V., Constantinou M., Shkunov M. Effect of Nanowire-dielectric Interface on the Hysteresis of Solution Processed Silicon Nanowire FETs. Nanoscience and Nanoengineering. 2017, Vol. 5, No 2, pp. 17-24.
Abay S., Persson D., Nilsson H., Wu F., Xu H.Q., Fogelstrom M., Shumeiko V., Delsing P. Charge transport in InAs nanowire Josephson junctions. Physical Review B. 2014, Vol. 89, pp. 1-11.
Yu G.-F., Yu M., Pan W., Han W.-P., Yan X., Zhang J.-Ch., Zhang H.-D., Long Y.-Z. Electrical Transport Properties of an Isolated CdS Microrope Composed of Twisted Nanowires. Nanoscale Research Letters. 2015, Vol. 1, pp.1-7.
Martínez L., Ocampo O., Kumar Y., Agarwal V. ZnO-porous silicon nanocomposite for possible memristive device fabrication. Nanoscale Research Letters. 2014, Vol. 9, No 437, pp. 1- 6.
Yaseen Z.A., Yiseen G.A. Morphology of Porous Silicon Nanostructures in p-type Silicon Based on Novel Comparison between Two Electrochemical Cells Design. International Journal of Electrochemical Science. 2016, Vol. 11, pp. 2473-2485.
Ibraimov M.K., Sagidolda Y., Rumyantsev S.L., Zhanabaev Z.Zh., and Shur M.S. Selective Gas Sensor Using Porous Silicon. Sensor Letters. 2016, Vol. 14, No 6, pp. 588-591.
Kruglyak Yu.A. From ballistic conductivity to diffusion in the Landauer-Datt-Lundstrom transport model. Nanosystems, Nanomaterials, Nanotechnologies. 2013, Vol. 11, No. 4, pp. 655-677. [in Russian]
"