CONFORMATIONAL STRUCTURE OF AN ADSORBED POLYELECTROLYTE ON A NANOPARTICLE WITH LOW CONDUCTIVITY IN AN ALTERNATING ELECTRIC FIELD
DOI:
https://doi.org/10.31489/2023No3/5-19Keywords:
semiconductor nanoparticle, macromolecule, conjugates, conformations, molecular dynamicsAbstract
An analytical form of the model of the quasi-equilibrium conformational structure of the units of the Gaussian chain of a polyelectrolyte adsorbed on a nanospheroid with a relatively low electrical conductivity (undoped semiconductor) polarized in an external harmonically varying quasi-static electric field with a frequency significantly lower than the plasma frequency of the nanoparticle material is proposed. Variants of the model are discussed that go beyond the scope of the quasi-static approximation, i.e., take into account the effects of delay, the manifestation of which will be noticeable in the case of sufficiently extended nanostructures. Electrically induced conformational changes of generally neutral polyampholytic polypeptides on the surface of a spherical germanium nanoparticle in a static or alternating external electric field have been studied by molecular dynamics. In a static electric field, in the case of a small distance between the charged units in the polyampholyte, a large number of macrochain loops were formed, elongated in the direction of the polarization axis of the nanoparticle. If the distance between the oppositely charged amino acid residues of the polypeptide exceeded the diameter of the nanoparticle, the charged units were mainly localized in the oppositely charged subpolar regions of the polarized germanium nanoparticle. In an alternating electric field, a girdle polyampholyte edge was formed in the equatorial region of the nanoparticle, the macrochain links of which were desorbed from the surface with an increase in the amplitude of the polarizing alternating electric field.
References
Lowe S.B., Dick J.A.G., Cohen B.E., et al. Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot–peptide conjugates. ACS Nano, 2012, Vol. 6, pp. 851-857. doi:10.1021/nn204361s.
Yang L., Ahn D.J., Koo E. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization. Materials Science and Engineering: C, 2016, Vol. 69, pp. 625-630. doi:10.1016/j.msec.2016.07.021.
Perng W., Palui G., Wang W., Mattoussi H. Elucidating the role of surface coating in the promotion or prevention of protein corona around quantum dots. Bioconjugate Chem., 2019, Vol. 30. pp. 2469-2480. doi:10.1021/acs.bioconjchem.9b00549.
Green C.M., Spangler J., Susumu K., et al. Quantum dot-based molecular beacons for quantitative detection of nucleic acids with CRISPR/Cas(N) nucleases. ACS Nano, 2022, Vol. 16. pp. 20693-20704. doi:10.1021/acsnano.2c07749.
Jin Z., Dridi N., Palui G. et al. Quantum dot–peptide conjugates as energy transfer probes for sensing the proteolytic activity of matrix metalloproteinase-14. Anal. Chem., 2023, Vol. 95, pp. 2713–2722. doi:10.1021/acs.analchem.2c034002713-2722.
Nejad Z.K., Khandar A.A., Khatamian M. Graphene quantum dots based MnFe2O4@SiO2 magnetic nanostructure as a pH-sensitive fluorescence resonance energy transfer (FRET) system to enhance the anticancer effect of the drug. Intern. Journal of Pharmaceutics, 2022, Vol. 628. pp. 122254. doi: 10.1016/j.ijpharm.2022.122254.
Tade R.S., Patil P.O. Fabrication of poly (aspartic) acid functionalized graphene quantum dots based FRET sensor for selective and sensitive detection of MAGE-A11 antigen. Microchemical Journal, 2022, Vol. 183, pp. 107971. doi:10.1016/j.microc.2022.107971.
Nevidimov. A.V., Razumov V.F. Nonradiative Energy Transfer in “Colloidal Quantum Dot Nanocluster–Dye” Hybrid Nanostructures: Computer Experiment. High Energy Chemistry, 2020, Vol. 54, pp. 28–35. https://doi.org/10.1134/S0018143920010105.
Nikolenko L.M., Pevtsov D.N., Brichkin S.B. Quantum-size effect for intraband electronic transition in colloidal silver selenide quantum dots. High Energy Chemistry, 2022, Vol. 56, pp. 380–382. doi:10.1134/S0018143922050125.
Cantini E., Wang X., Koelsch P., et al. Electrically Responsive Surfaces: Experimental and Theoretical Investigations. Acc. Chem. Res., 2016, Vol. 49, pp. 1223–1231. doi:10.1021/acs.accounts.6b00132.
Zhao J., Wang X., Jiang N. et al. Polarization Effect and Electric Potential Changes in the Stimuli-Responsive Molecular Monolayers Under an External Electric Field. J. Phys. Chem. C, 2015, Vol. 119, pp. 22866–22881. doi:10.1021/acs.jpcc.5b04805.
Ghafari A.M., Domínguez S.E., Järvinen V. et al. In Situ Coupled Electrochemical-Goniometry as a Tool to Reveal Conformational Changes of Charged Peptides. Advanced Materials Interfaces, 2022, Vol. 9, pp. 2101480. doi:10.1002/admi.202101480.
Gomes B.S, Cantini E., Tommasone S. et al. On-Demand Electrical Switching of Antibody–Antigen Binding on Surfaces. ACS Appl. Bio Mater., 2018, Vol. 1, pp. 738–747. doi:10.1021/acsabm.8b00201.
Kruchinin N.Y., Kucherenko M.G. Molecular-dynamics simulation of rearrangements in the conformational structure of polyampholytic macromolecules on the surface of a polarized metal nanoparticle. Colloid Journal, 2020, Vol. 82, pp. 136-143. doi:10.1134/S1061933X20020088.
Kruchinin N.Y., Kucherenko M.G. Conformational rearrangements of polyampholytic polypeptides on metal nanoparticle surface in microwave electric field: molecular-dynamics simulation. Colloid Journal, 2020, Vol. 82, pp. 392-402. doi:10.1134/S1061933X20040067.
Kruchinin N.Yu., Kucherenko M.G. Rearrangement of the conformational structure of polyampholytes on the surface of a metal nanowire in a transverse microwave electric field. Eurasian phys. tech. j. 2021, Vol.18, pp. 16-28. doi:10.31489/2021No1/16-28.
Kucherenko M.G., Kruchinin N.Yu., Neyasov P.P. Modeling of conformational changes of polyelectrolytes on the surface of a transversely polarized metal nanowire in an external electric field. Eurasian phys. tech. j. 2022, Vol. 19, pp. 19-29. doi:10.31489/2022No2/19-29.
Kruchinin N.Yu., Kucherenko M.G. Rearrangements in the conformational structure of polyampholytic polypeptides on the surface of a uniformly charged and polarized nanowire: Molecular dynamics simulation. Surfaces and Interfaces, 2021, Vol. 27, pp. 101517. doi:10.1016/j.surfin.2021.101517.
Kruchinin N.Yu., Kucherenko M.G. Molecular dynamics simulation of the conformational structure of uniform polypeptides on the surface of a polarized metal prolate nanospheroid with varying pH. Russian Journal of Physical Chemistry A, 2022, Vol. 96, pp. 624-632. doi:10.1134/S0036024422030141.
Kruchinin N.Yu., Kucherenko M.G. Modeling of electrical induced conformational changes of macromolecules on the surface of metallic nanospheroids. Materials Today: Proceedings, 2022, Vol. 71, Part 1, pp. 18-30. doi:10.1016/j.matpr.2022.07.139.
Kruchinin N.Yu., Kucherenko M.G. Rearrangements in the conformational structure of polyelectrolytes on the surface of a flattened metal nanospheroid in an alternating electric field. Colloid Journal, 2023, Vol. 85. pp. 44-58. doi:10.1134/S1061933X22600440.
Landau L.D., Pitaevskii L.P., Lifshitz E.M. Electrodynamics of Continuous Media, 2nd Edition, Elsevier Ltd., 1984, 460 p.
Grosberg A.Y., Khokhlov A.R. Statistical Physics of Macromolecules, 1994, AIP Press, New York. 347 p.
Klimov V.V. Nanoplasmonics, 2009, Moscow: Fizmatlit, 480 p. [in Russian]
Budak B.M., Samarskii A.A., Tikhonov A.N. Collection of problems in mathematical physics, 1979, M.: Science, 686 p. [in Russian]
Phillips J.C., Braun R., Wang W., et al. Scalable molecular dynamics with NAMD. J Comput Chem., 2005, Vol. 26, pp. 1781-1802. https://doi.org/10.1002/jcc.20289.
MacKerell A.D. Jr., Bashford D., Bellott M., et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins J. Phys. Chem. B, 1998, Vol. 102, pp. 3586-3616. doi:10.1021/jp973084f.
Huang J., Rauscher S., Nawrocki G. et al. CHARMM36m: an improved force field for folded and intrinsically dis-ordered proteins. Nature Methods, 2016, Vol.14, pp. 71-73. doi:10.1038/nmeth.4067.
Rappe A.K., Casewit C.J., Colwell K.S., et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc., 1992, Vol. 114, pp. 10024–10035. doi:10.1021/ja00051a040.
Eidani M., Akbarzadeh H., Mehrjouei E., et al. Thermal stability and melting mechanism of diamond nanothreads: Insight from molecular dynamics simulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, Vol. 655, pp. 130248. doi:10.1016/j.colsurfa.2022.130248
Marashizadeh P., Abshirini M., Saha M., et al. Interfacial properties of ZnO nanowire-enhanced carbon fiber composites: a molecular dynamics simulation study. Langmuir, 2021, Vol. 37, pp. 7138–7146. doi:10.1021/acs.langmuir.1c00711.
Darden T., York D., Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, Vol. 98, pp. 10089-10092. doi:10.1063/1.464397.
Jorgensen W.L., Chandrasekhar J., Madura J.D., et al. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, Vol. 79, pp. 926-935. doi:10.1063/1.445869.
Izmailov S.V. Electrodynamics course, 1962, M .: State educational and pedagogical publishing house of the Ministry of Education of the RSFSR, 439 p. [in Russian]
Shankla M., Aksimentiev A. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged grapheme. Nat Commun., 2014, Vol. 5, pp. 5171. doi:10.1038/ncomms6171.