INVESTIGATION THE MAGNETIC PROPERTIES OF CsyCo1-0.5yFe2O4 NANOPARTICLES AT LOW MOLAR RATIO VARIATION

INVESTIGATION THE MAGNETIC PROPERTIES OF CsyCo1-0.5yFe2O4 NANOPARTICLES AT LOW MOLAR RATIO VARIATION

Authors

DOI:

https://doi.org/10.31489/2023No4/6-16

Keywords:

Cesium Cobalt Ferrite, Structural properties, Hysteresis loop, Nanoparticles, Magnetization

Abstract

The effect of substitution ferrite by previously not used elements to control magnetic properties is of great interest to researchers. This study illustrates the effect of low substitution of Cs, with molar ratios of y of 0.0, 0.05, 0.15, and 0.25 on the structural and magnetic properties of CsyCo1-0.5yFe2O4 nanoparticles. The synthesizing method was the co-precipitation method. The metal chlorides were used to perform the reaction in the distilled water using NaOH to reach a pH of 10. The X-ray diffraction, Field Emission Scanning Electron Microscopy, Electron Dispersive X-ray and Vibrating Sample Magnetometry analyses were conducted for all samples. All samples had the patterns of the spinel structure coincide to a high degree with the Co ferrite pattern. There was a general increase in the lattice constant with the increase in the Cs content, while the crystallite size decreased from about 18 to 12.2 nm as the molar ratio increased from 0 to 0.25. The Electron Microscopy investigation showed that all samples owing spherical nanoparticles with no other shapes. The average particle sizes were between 40 to 60 nm, which increased Cs1+ content. The magnetic parameters mainly showed a relatively high coercivity (wide loops) and a decrease in magnetization saturation (down to 50.43 emu/g), crystalline anisotropic constant, and the squareness ratio.

References

Gore S.K., Jadhav S.S., Jadhav V V. The structural and magnetic properties of dual phase cobalt ferrite. Scientific Reports, 2017, Vol.7(1). doi:10.1038/s41598-017-02784-z.

Abdel Maksoud M.I., El-Sayyad G.S., Fayad E., et al. Gamma irradiation assisted the sol–gel method for silver modified-nickel molybdate nanoparticles synthesis: Unveiling the antimicrobial, and antibiofilm activities against some pathogenic microbes. Journal of Inorganic and Organometallic Polymers and Materials, 2021, Vol. 32(2), pp. 728–740. doi:10.1007/s10904-021-02132-9.

Tijerina-Rosa A., Greneche J.M., Fuentes A.F., et al. Partial substitution of cobalt by rare-earths (gd or SM) in cobalt ferrite: Effect on its microstructure and magnetic properties. Ceramics International, 2019, 45(17), pp. 22920–22929. doi:10.1016/j.ceramint.2019.07.335.

Slimani Y., Almessiere M.A., Hannachi E., Baykal A., Manikandan A., Mumtaz M., Ben Azzouz F. Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceramics International, 2019, Vol.45, Issue 2, Part A, pp. 2621 – 2628. doi:10.1016/j.ceramint.2018.10.201.

Almessiere M.A., Slimani Y., Hannachi E., et al. Impact of DY2O3 nanoparticles additions on the properties of porous YBCO Ceramics. Journal of Materials Science: Materials in Electronics, 2019, Vol. 30(19), pp. 17572–17582. doi:10.1007/s10854-019-02106-1.

Irfan M., Khan U., Li W., et al. Structural and magnetic properties of fe3ga alloy nanowires: Effect of post annealing treatment. Journal of Alloys and Compounds, 2017, Vol. 691, pp. 1–7. doi:10.1016/j.jallcom.2016.08.241.

Kounsalye J.S., Kharat P.B., Shisode M.V., et al. Influence of ti4+ ion substitution on structural, electrical and dielectric properties of li0.5fe2.5o4 nanoparticles. Journal of Materials Science: Materials in Electronics, 2017, Vol. 28(22), pp. 17254–17261. doi:10.1007/s10854-017-7656-1.

Vinayak, V., Khirade P.P., Birajdar S.D., et al. Structural, microstructural, and magnetic studies on magnesium (mg2+)-substituted CoFe2O4 nanoparticles. Journal of Superconductivity and Novel Magnetism, 2016. Vol. 29(4), pp.1025–1032. doi:10.1007/s10948-015-3348-3.

Joshi S., Kamble V.B., Kumar M., et al. Nickel substitution induced effects on gas sensing properties of cobalt ferrite nanoparticles. Journal of Alloys and Compounds, 2016, Vol.654, pp. 460–466. doi:10.1016/j.jallcom.2015.09.119.

Lafta S.H. Evaluation of hematite nanoparticles weak ferromagnetism. Journal of Superconductivity and Novel Magnetism, 2020, Vol.33(12), pp. 3765–3772. doi:10.1007/s10948-020-05626-8.

Lafta S.H. Hydrothermal temperature influence on magnetic and fmr properties of hematite nanoparticles. SSRN Electronic Journal, 2021 [Preprint]. doi:10.2139/ssrn.3989692.

Anu K., Hemalatha J. Magnetic and electrical conductivity studies of zinc doped cobalt ferrite nanofluids. Journal of Molecular Liquids, 2019, Vol. 284, pp. 445–453. doi:10.1016/j.molliq.2019.04.018.

Kurian M., Thankachan S., Nair D.S., et al. Structural, magnetic, and acidic properties of cobalt ferrite nanoparticles synthesised by wet chemical methods. Journal of Advanced Ceramics, 2015, Vol.4(3), pp. 199–205. doi:10.1007/s40145-015-0149-x.

Patterson A.L. The Scherrer formula for X-ray particle size determination. Physical Review, 1939, Vol.56(10), pp. 978–982. doi:10.1103/physrev.56.978.

Topkaya R., Baykal A., Demir A. Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. Journal of nanoparticle research, 2013, Vol.15, pp.1-18. doi:10.1007/s11051-012-1359-6.

Demortière A., Panissod P., Pichon B.P., Pourroy G., Guillon D., Donnio B., Bégin-Colin S. Size-dependent properties of magnetic iron oxidenanocrystals. Nanoscale, 2011, Vol. 3(1), pp. 225 – 232.

Abdel-Mohsen L.H., Lafta S.H., Hashim M.S. Comparing the role of NaOH and NH4OH on structural and magnetic properties of spinel Ba ferrite synthesized by autocombustion method. Journal of Physics: IOP Conference Series, 2022, 2322(1), 012081. doi:10.1088/1742-6596/2322/1/012081.

Penchal Reddy M., Zhou X., Yann A., Du S., Huang Q., Mohamed A.M.A. Low temperature hydrothermal synthesis, structural investigation and functional properties of Co Mn1−Fe2O4 (0⩽x⩽1.0) nanoferrites. Superlattices and Microstructures, 2015, Vol.81, pp. 233 – 242.

Sagar S., Iqbal N., Maqsood A., Shahid M., Shah N.A., Jamil T., Bassyouni M.I. Fabrication and thermal characteristics of functionalized carbon nanotubes impregnated polydimethylsiloxane nanocomposites. Journal of Composite Materials, 2014, Vol. 49(8), pp. 995 – 1006.

Kumar H., Singh J.P., Srivastava R.C., Negi P., Agrawal H.M., Asokan K. FTIR and Electrical Study of Dysprosium Doped Cobalt Ferrite Nanoparticles. Journal of Nanoscience, 2014, pp.1-10.

Ibrahim I., Ali I.O., Salama T.M., Bahgat A., Mohamed M.M. Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M = Zn, Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: High catalytic performances for nitroarenes reduction. Applied Catalysis B: Environmental, 2016, Vol.181, pp. 389 – 402.

Gutiérrez L., De la Cueva L., Moros M., Mazarío E., De Bernardo S., De la Fuente J.M., Morales M.P., Salas G. Aggregation effects on the magnetic properties of iron oxide colloids. Nanotechnology, 2019, Vol. 30(11), pp.112001.

Gbashi K.R., Bahari A., Lafta, S.H. Thin films for nano-electronics applications based on BaCaTiO3–SrZnTiO3 perovskite with Au electrodes. Applied Physics A, 2023, 129(5), 350. doi:10.1007/s00339-023-06621-1.

Sathya A., Guardia P., Brescia R., Silvestri N., Pugliese G., Nitti S., Manna L., Pellegrino T. CoxFe3–xO4 Nanocubes for Theranostic Applications: Effect of Cobalt Content and Particle Size. Chemistry of Materials, 2016, Vol.28(6), pp.1769-1780. doi:10.1021/acs.chemmater.5b04780.

Andersen H.L., Saura-Múzquiz M., Granados-Miralles C., Canévet E., Lock N., Christensen M. Crystalline and magnetic structure–property relationship in spinel ferrite nanoparticles. Nanoscale, 2018, Vol. 10(31), pp.14902-14914.

Gupta M., Randhawa B. Microstructural, magnetic and electric properties of mixed Cs–Zn ferrites prepared by solution combustion method. Solid State Sciences, 2012, Vol.14(7), pp.849-856.

Rotjanasuworapong K, Lerdwijitjarud W, Sirivat A. Synthesis and Characterization of Fe0.8Mn0.2Fe2O4 Ferrite Nanoparticle with High Saturation Magnetization via the Surfactant Assisted Co-Precipitation. Nanomaterials, 2021, Vol.11(4), pp.876. doi:10.3390/nano11040876.

Biswal D, Peeples BN, Peeples C, Pradhan AK. Tuning of magnetic properties in cobalt ferrite by varying Fe +2 and Co+2 molar ratios. Journal of Magnetism and Magnetic Materials, 2013; 345:1-6. doi:10.1016/j.jmmm.2013.05.052.

Lafta SH. Broadband ferromagnetic resonance of non-stoichiometric nano Nickle ferrite with different Ni2+content. Materials Research Express, 2019, Vol. 6(4), pp. 046103. doi:10.1088/2053-1591/aafb80

Lafta SH. The Relation of Crystallite Size and Ni2+ Content to Ferromagnetic Resonance Properties of Nano Nickel Ferrites. Journal of Magnetics, 2017, Vol. 22(2), pp.188-195. doi:10.4283/jmag.2017.22.2.188.

Jahan N, Uddin MM, Khan MNI, Chowdhury F-U-Z, Hasan MR, Das HN, Hossain M.M. Impact of particle size on the magnetic properties of highly crystalline Yb3+ substituted Ni–Zn nanoferrites. Journal of Materials Science: Materials in Electronics, 2021, Vol. 32(12), pp. 6528-16543. doi:10.1007/s10854-021-06209-6.

Kumar Y., Shirage P.M. Highest coercivity and considerable saturation magnetization of CoFe2O4 nanoparticles with tunable band gap prepared by thermal decomposition approach. Journal of Materials Science, 2017 Vol. 52(9), pp.4840-4851. doi:10.1007/s10853-016-0719-5.

Sarmah S., Borah R., Maji P., Ravi S., Bora T. Effect of Al3+ substitution on structural, magnetic and dielectric properties of cobalt ferrite synthesized by sol-gel method and its correlation with cationic distribution. Physica B: Condensed Matter, 2022, Vol.639, pp. 414017. doi:10.1016/j.physb.2022.414017.

Zhang L., Huang Z, Shao H, Li Y., Zheng H. Effects of γ-Fe2O3 on γ-Fe2O3/Fe3O4 composite magnetic fluid by low-temperature low-vacuum oxidation method. Materials & Design, 2016, Vol. 105, pp. 234 – 239. doi:10.1016/j.matdes.2016.05.077.

Downloads

Published online

2024-01-04

How to Cite

Tareq, M., Lafta, . S. H., & Wafaa A., H. (2024). INVESTIGATION THE MAGNETIC PROPERTIES OF CsyCo1-0.5yFe2O4 NANOPARTICLES AT LOW MOLAR RATIO VARIATION. Eurasian Physical Technical Journal, 20(4(46), 6–16. https://doi.org/10.31489/2023No4/6-16

Issue

Section

Materials science
Loading...