Исследование магнитных свойств наночастиц CsyCo1-0.5yFe2O4 при низком молярном соотношении
DOI:
https://doi.org/10.31489/2023No4/6-16Ключевые слова:
цезий-кобальтовый феррит, структурные свойства, петля гистерезиса, наночастицы, намагничиваниеАннотация
Эффект замещения феррита ранее не использовавшимися элементами для управления магнитными свойствами представляет большой интерес для исследователей. Данное исследование иллюстрирует влияние низкого замещения Cs с молярными соотношениями y, равных 0,0, 0,05, 0,15 и 0,25, на структурные и магнитные свойства наночастиц CsyCo1-0.5yFe2O4. Метод синтеза являлся методом осаждения. Хлориды металлов использовались для проведения реакции в дистиллированной воде с использованием NaOH для достижения pH 10. Для всех образцов были проведены рентгеновская дифракция, полевая эмиссионная сканирующая электронная микроскопия, электронно-дисперсионная рентгенография и магнитометрия вибрирующих образцов. У всех образцов шпинельная структура в значительной степени совпадает с структурой феррита Со. Наблюдалось общее увеличение постоянной решетки с ростом содержания Cs, в то время как размер кристаллитов уменьшался примерно с 18-ти до 12,2 нм при увеличении молярного соотношения от 0 до 0,25. Электронно-микроскопическое исследование показало, что все образцы имеют сферические наночастицы без каких-либо других форм. Средний размер частиц составлял от 40 до 60 нм при увеличении содержания Cs1+. Магнитные параметры в основном показали относительно высокую коэрцитивную силу (широкие петли) и снижение насыщенности намагниченности (до 50,43 мкГ/г), кристаллической анизотропной постоянной и коэффициента квадратичности.
Библиографические ссылки
Gore S.K., Jadhav S.S., Jadhav V V. The structural and magnetic properties of dual phase cobalt ferrite. Scientific Reports, 2017, Vol.7(1). doi:10.1038/s41598-017-02784-z.
Abdel Maksoud M.I., El-Sayyad G.S., Fayad E., et al. Gamma irradiation assisted the sol–gel method for silver modified-nickel molybdate nanoparticles synthesis: Unveiling the antimicrobial, and antibiofilm activities against some pathogenic microbes. Journal of Inorganic and Organometallic Polymers and Materials, 2021, Vol. 32(2), pp. 728–740. doi:10.1007/s10904-021-02132-9.
Tijerina-Rosa A., Greneche J.M., Fuentes A.F., et al. Partial substitution of cobalt by rare-earths (gd or SM) in cobalt ferrite: Effect on its microstructure and magnetic properties. Ceramics International, 2019, 45(17), pp. 22920–22929. doi:10.1016/j.ceramint.2019.07.335.
Slimani Y., Almessiere M.A., Hannachi E., Baykal A., Manikandan A., Mumtaz M., Ben Azzouz F. Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceramics International, 2019, Vol.45, Issue 2, Part A, pp. 2621 – 2628. doi:10.1016/j.ceramint.2018.10.201.
Almessiere M.A., Slimani Y., Hannachi E., et al. Impact of DY2O3 nanoparticles additions on the properties of porous YBCO Ceramics. Journal of Materials Science: Materials in Electronics, 2019, Vol. 30(19), pp. 17572–17582. doi:10.1007/s10854-019-02106-1.
Irfan M., Khan U., Li W., et al. Structural and magnetic properties of fe3ga alloy nanowires: Effect of post annealing treatment. Journal of Alloys and Compounds, 2017, Vol. 691, pp. 1–7. doi:10.1016/j.jallcom.2016.08.241.
Kounsalye J.S., Kharat P.B., Shisode M.V., et al. Influence of ti4+ ion substitution on structural, electrical and dielectric properties of li0.5fe2.5o4 nanoparticles. Journal of Materials Science: Materials in Electronics, 2017, Vol. 28(22), pp. 17254–17261. doi:10.1007/s10854-017-7656-1.
Vinayak, V., Khirade P.P., Birajdar S.D., et al. Structural, microstructural, and magnetic studies on magnesium (mg2+)-substituted CoFe2O4 nanoparticles. Journal of Superconductivity and Novel Magnetism, 2016. Vol. 29(4), pp.1025–1032. doi:10.1007/s10948-015-3348-3.
Joshi S., Kamble V.B., Kumar M., et al. Nickel substitution induced effects on gas sensing properties of cobalt ferrite nanoparticles. Journal of Alloys and Compounds, 2016, Vol.654, pp. 460–466. doi:10.1016/j.jallcom.2015.09.119.
Lafta S.H. Evaluation of hematite nanoparticles weak ferromagnetism. Journal of Superconductivity and Novel Magnetism, 2020, Vol.33(12), pp. 3765–3772. doi:10.1007/s10948-020-05626-8.
Lafta S.H. Hydrothermal temperature influence on magnetic and fmr properties of hematite nanoparticles. SSRN Electronic Journal, 2021 [Preprint]. doi:10.2139/ssrn.3989692.
Anu K., Hemalatha J. Magnetic and electrical conductivity studies of zinc doped cobalt ferrite nanofluids. Journal of Molecular Liquids, 2019, Vol. 284, pp. 445–453. doi:10.1016/j.molliq.2019.04.018.
Kurian M., Thankachan S., Nair D.S., et al. Structural, magnetic, and acidic properties of cobalt ferrite nanoparticles synthesised by wet chemical methods. Journal of Advanced Ceramics, 2015, Vol.4(3), pp. 199–205. doi:10.1007/s40145-015-0149-x.
Patterson A.L. The Scherrer formula for X-ray particle size determination. Physical Review, 1939, Vol.56(10), pp. 978–982. doi:10.1103/physrev.56.978.
Topkaya R., Baykal A., Demir A. Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. Journal of nanoparticle research, 2013, Vol.15, pp.1-18. doi:10.1007/s11051-012-1359-6.
Demortière A., Panissod P., Pichon B.P., Pourroy G., Guillon D., Donnio B., Bégin-Colin S. Size-dependent properties of magnetic iron oxidenanocrystals. Nanoscale, 2011, Vol. 3(1), pp. 225 – 232.
Abdel-Mohsen L.H., Lafta S.H., Hashim M.S. Comparing the role of NaOH and NH4OH on structural and magnetic properties of spinel Ba ferrite synthesized by autocombustion method. Journal of Physics: IOP Conference Series, 2022, 2322(1), 012081. doi:10.1088/1742-6596/2322/1/012081.
Penchal Reddy M., Zhou X., Yann A., Du S., Huang Q., Mohamed A.M.A. Low temperature hydrothermal synthesis, structural investigation and functional properties of Co Mn1−Fe2O4 (0⩽x⩽1.0) nanoferrites. Superlattices and Microstructures, 2015, Vol.81, pp. 233 – 242.
Sagar S., Iqbal N., Maqsood A., Shahid M., Shah N.A., Jamil T., Bassyouni M.I. Fabrication and thermal characteristics of functionalized carbon nanotubes impregnated polydimethylsiloxane nanocomposites. Journal of Composite Materials, 2014, Vol. 49(8), pp. 995 – 1006.
Kumar H., Singh J.P., Srivastava R.C., Negi P., Agrawal H.M., Asokan K. FTIR and Electrical Study of Dysprosium Doped Cobalt Ferrite Nanoparticles. Journal of Nanoscience, 2014, pp.1-10.
Ibrahim I., Ali I.O., Salama T.M., Bahgat A., Mohamed M.M. Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M = Zn, Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: High catalytic performances for nitroarenes reduction. Applied Catalysis B: Environmental, 2016, Vol.181, pp. 389 – 402.
Gutiérrez L., De la Cueva L., Moros M., Mazarío E., De Bernardo S., De la Fuente J.M., Morales M.P., Salas G. Aggregation effects on the magnetic properties of iron oxide colloids. Nanotechnology, 2019, Vol. 30(11), pp.112001.
Gbashi K.R., Bahari A., Lafta, S.H. Thin films for nano-electronics applications based on BaCaTiO3–SrZnTiO3 perovskite with Au electrodes. Applied Physics A, 2023, 129(5), 350. doi:10.1007/s00339-023-06621-1.
Sathya A., Guardia P., Brescia R., Silvestri N., Pugliese G., Nitti S., Manna L., Pellegrino T. CoxFe3–xO4 Nanocubes for Theranostic Applications: Effect of Cobalt Content and Particle Size. Chemistry of Materials, 2016, Vol.28(6), pp.1769-1780. doi:10.1021/acs.chemmater.5b04780.
Andersen H.L., Saura-Múzquiz M., Granados-Miralles C., Canévet E., Lock N., Christensen M. Crystalline and magnetic structure–property relationship in spinel ferrite nanoparticles. Nanoscale, 2018, Vol. 10(31), pp.14902-14914.
Gupta M., Randhawa B. Microstructural, magnetic and electric properties of mixed Cs–Zn ferrites prepared by solution combustion method. Solid State Sciences, 2012, Vol.14(7), pp.849-856.
Rotjanasuworapong K, Lerdwijitjarud W, Sirivat A. Synthesis and Characterization of Fe0.8Mn0.2Fe2O4 Ferrite Nanoparticle with High Saturation Magnetization via the Surfactant Assisted Co-Precipitation. Nanomaterials, 2021, Vol.11(4), pp.876. doi:10.3390/nano11040876.
Biswal D, Peeples BN, Peeples C, Pradhan AK. Tuning of magnetic properties in cobalt ferrite by varying Fe +2 and Co+2 molar ratios. Journal of Magnetism and Magnetic Materials, 2013; 345:1-6. doi:10.1016/j.jmmm.2013.05.052.
Lafta SH. Broadband ferromagnetic resonance of non-stoichiometric nano Nickle ferrite with different Ni2+content. Materials Research Express, 2019, Vol. 6(4), pp. 046103. doi:10.1088/2053-1591/aafb80
Lafta SH. The Relation of Crystallite Size and Ni2+ Content to Ferromagnetic Resonance Properties of Nano Nickel Ferrites. Journal of Magnetics, 2017, Vol. 22(2), pp.188-195. doi:10.4283/jmag.2017.22.2.188.
Jahan N, Uddin MM, Khan MNI, Chowdhury F-U-Z, Hasan MR, Das HN, Hossain M.M. Impact of particle size on the magnetic properties of highly crystalline Yb3+ substituted Ni–Zn nanoferrites. Journal of Materials Science: Materials in Electronics, 2021, Vol. 32(12), pp. 6528-16543. doi:10.1007/s10854-021-06209-6.
Kumar Y., Shirage P.M. Highest coercivity and considerable saturation magnetization of CoFe2O4 nanoparticles with tunable band gap prepared by thermal decomposition approach. Journal of Materials Science, 2017 Vol. 52(9), pp.4840-4851. doi:10.1007/s10853-016-0719-5.
Sarmah S., Borah R., Maji P., Ravi S., Bora T. Effect of Al3+ substitution on structural, magnetic and dielectric properties of cobalt ferrite synthesized by sol-gel method and its correlation with cationic distribution. Physica B: Condensed Matter, 2022, Vol.639, pp. 414017. doi:10.1016/j.physb.2022.414017.
Zhang L., Huang Z, Shao H, Li Y., Zheng H. Effects of γ-Fe2O3 on γ-Fe2O3/Fe3O4 composite magnetic fluid by low-temperature low-vacuum oxidation method. Materials & Design, 2016, Vol. 105, pp. 234 – 239. doi:10.1016/j.matdes.2016.05.077.