DIRECT CONTACT RESISTANCE MEASUREMENT DURING THERMOELECTRIC TESTING

DIRECT CONTACT RESISTANCE MEASUREMENT DURING THERMOELECTRIC TESTING

Authors

DOI:

https://doi.org/10.31489/2024No2/38-48

Keywords:

thermoelectromotive force, hot electrode, cold electrode, contact resistance, current generator, filter, measuring resistor

Abstract

The article analyzes the influence of the contact resistance of the electrodes on the inspection result. It is shown that as the value of the measuring resistor increases, the permissible value of the contact resistance of the electrodes with the test sample increases. An indirect method for monitoring contact resistance has been proposed, which consists of passing a stable high-frequency current through the contact resistance and measuring the voltage across this resistance. The variation of relative voltage across the measuring resistor with respect to the total contact resistance has been graphed. The maximum allowable contact resistance has been determined to ensure that the measured thermoelectric EMF differs from the true value by no more than 10%. The proposed method allows to measure contact resistance directly in the process of monitoring thermoelectromotive force.
Keywords: thermoelectromotive force, hot electrode, cold electrode, contact resistance, current generator, filter, measuring resistor.

Author's detail

Soldatov А.I.

Soldatov, Aleksey Ivanovich– Doctor of techn. sciences, Professor, National Research Tomsk Polytechnical University, Tomsk, Russia, Tomsk, Russia; https://orcid.org/0000-0003-1892-1644; asoldatof@mail.ru

Soldatov A.A.

Soldatov, Andrey Alekseevich– Candidate of techn. sciences, Associate Professor, National Research Tomsk Polytechnical University, Tomsk, Russia; https://orcid.org/0000-0003-0696-716X; soldatov.88@bk.ru

Abouellail A.A.

Abouellail, Ahmed Ali – Candidate of techn. sciences, Lecturer, Sphinx University, New Asyut, Egypt; https://orcid.org/0000-0002-9357-6214; ahmed.abouellail@sphinx.edu.eg

Kostina M.A.

Kostina, Maria Alekseevna– Candidate of techn. sciences, Associate Professor, National Research Tomsk Polytechnical University, Tomsk, Russia; https://orcid.org/0000-0003-2626-6002;mariyakostina91@mail.ru

References

Carreon H. (2002) Thermoelectric Nondestructive Evaluation of Residual Stress in Shot-Peened Metals. Research in Nondestructive Evaluation. 14(2), 59 – 80. DOI: 10.1080/09349840209409705.

Nagy P.B. (2010) Non-destructive methods for materials' state awareness monitoring. Insight: Non-Destructive Testing and Condition Monitoring. 52(2), 61 – 71. DOI: 10.1784/insi.2010.52.2.61.

Li J.F., Liu W.S., Zhao L.D., Zhou M. (2010) High-performance nanostructured thermoelectric materials. Npg Asia Mater. 2(4), 152 – 158. DOI: 10.1038/asiamat.2010.138.

Kikuchi M. (2010) Dental alloy sorting by the thermoelectric method. European Journal of Dentistry. 4(1), 66 – 70. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798792/

Stuart C. (1987) Thermoelectric Differences Used for Metal Sorting. Journal of Testing and Evaluation. 15(4), 224 – 230. DOI: 10.1520/JTE11013J. ISSN 0090-3973.

Dragunov V.K., Goncharov A.L. (2019) New approaches to the rational manufacturing of combined constructions by EBW. Proceeding of the IOP Conference Series: Materials Science and Engineering. 681, 012010. DOI:10.1088/1757-899X/681/1/012010.

Goncharov A., Sliva A., Kharitonov I., Chulkova A., Terentyev E. (2020). Research of thermoelectric effects and their influence on electron beam in the process of welding of dissimilar steels. Proceeding of the IOP Conference Series: Materials Science and Engineering. 759(1), 012008. DOI: 10.1088/1757-899X/759/1/012008

Kharitonov I.A., Rodyakina R.V., Goncharov A.L. (2020) Investigation of magnetic properties of various structural classes steels in weak magnetic fields characteristic for generation of thermoelectric currents in electron beam welding. Solid State Phenomena. 299, 1201–1207. DOI: 10.4028/www.scientific.net/SSP.299.1201.

Soldatov A.I., Soldatov A.A., Sorokin P.V., Abouellail A.A., Obach I.I., Bortalevich V.Y., Shinyakov Y.A., Sukhorukov M.P. (2017) An experimental setup for studying electric characteristics of thermocouples. SIBCON 2017 – Proceedings. 79985342017. DOI: 10.1109/SIBCON.2017.7998534.

Carreon H., Medina A. (2007) Nondestructive characterization of the level of plastic deformation by thermoelectric power measurements in cold-rolled Ti–6Al–4V samples. Nondestructive Testing and Evaluation. 22(4), 299-311. DOI: 10.1080/10589750701546960

Carreon H. (2013) Detection of fretting damage in aerospace materials by thermoelectric means. Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security. 8694. DOI: 10.1117/12.2009448.

Lakshminarayan B., Carreon H., Nagy P. (2003) Monitoring of the Level of Residual Stress in Surface Treated Specimens by a Noncontacting Thermoelectric Technique. AIP Conference Procceding. 657, 1523-1530. DOI:10.1063/1.1570311.

Milićević I., Popović M., Dučić N., Slavković R., Dragićević S., Maričić A. (2018) Experimental Identification of the Degree of Deformation of a Wire Subjected to Bending. Science of Sintering. 50(2), 183-191. DOI:10.2298/SOS1802183M.

Soldatov A.I., Soldatov A.A., Sorokin P.V., Abouellail A.A., Kostina M.A. (2018) Thermoelectric method of plastic deformation detection. Materials Science Forum. 938, 112-118. DOI: 10.4028/www.scientific.net/MSF.938.112.

Magalhães A., De Backer J., Bolmsjö G. (2019) Thermal Dissipation Effect on Temperature-controlled Friction Stir Welding. Soldagem & Inspeção. 24(3), 1-9. DOI: 10.1590/0104-9224/si24.28.

Silva Ana C.F., De Backer J., Bolmsjö G. (2015) TWT method for temperature measurement during FSW process. The 4th international conference on scientific and technical advances on friction stir welding & processing. 95-98. Available at: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1290065&dswid=554.

De Backer J., Bolmsjö G., and Christiansson A.-K. (2014) Temperature control of robotic friction stir welding using the thermoelectric effect. The International Journal of Advanced Manufacturing Technology. 70, 375-383. DOI:10.1007/s00170-013-5279-0.

Silva Ana C. F., De Backer J., Bolmsjö G. (2015) Cooling rate effect on temperature controlled FSW process. Proceeding of the VII Intern. Conf. “High-Strength Materials: Challenges and Applications”. Available at: https://www.researchgate.net/publication/281450403_Cooling_rate_effect_on_temperature_controlled_FSW_process.

Silva Ana C.F., De Backer J., Bolmsjö G. 2016. Analysis of plunge and dwell parameters of robotic FSW using TWT temperature feedback control. Proceeding of the 11th Intern. Symposium on FSW. Available at: https://www.researchgate.net/publication/303389476_ANALYSIS_OF_PLUNGE_AND_DWELL_PARAMETERS.

Vasiliev I., Soldatov A., Abouellail A., Kostina M.A., Soldatov A.A., Soldatov D., Bortalevich S. (2021) Thermoelectric Quality Control of the Application of Heat-Conducting Compound. Studies in Systems, Decision and Control. 351, 59–68. DOI: 10.1007/978-3-030-68103-6_6.

Yang Zhou, Donghua Yang, Liangliang Li, Fu Li, and Jing-Feng Li. (2014) Fast Seebeck coefficient measurement based on dynamic method. Review of Scientific Instruments. 85, 054904. DOI: 10.1063/1.4876595.

Uchida K., Ota T., Adachi H., Xiao J., Nonaka T., Kajiwara Y., Bauer G.E.W., Maekawa S., Saitoh E. (2012) Thermal spin pumping and magnon-phonon-mediated spin-Seebeck effect. Journal of Applied Physics. 111(10), 103903. DOI:10.1063/1.4716012.

Uchida K., Takahashi S., Harii K., Ieda J., Koshibae W., Ando K., Maekawa S., Saitoh E. (2008) Observation of the spin Seebeck effect. Nature. 455, 778–781. DOI: 10.1038/nature07321.

Lider A.M., Larionov V.V., Syrtanov M.S. (2016) Hydrogen concentration measurements at titanium layers by means of thermo-EMF. Key Engineering Materials. 683, 199 – 202. DOI: 10.4028/www.scientific.net/KEM.683.199.

Iwanaga S., Toberer E.S., LaLonde A., Snyder G.J. (2011) A high temperature apparatus for measurement of the Seebeck coefficient. Review of Scientific Instruments. 82(6), 063905. DOI: 10.1063/1.3601358.

Sarath Kumar S.R., Kasiviswanathan S. (2008) A hot probe setup for the measurement of the Seebeck coefficient of thin wires and thin films using integral method.Review of Scientific Instruments. 79, 02432,DOI: 10.1063/1.2869039.

Abouellail A.A., Chang J., Soldatov А.I., Soldatov A.A., Kostina M.A., Vasiliev I.M. (2023) Thermoelectric Monitoring Of Thermal Resistance In Electronic Systems. Eurasian Physical Technical Journal. 20(3), 52-61. DOI: 10.31489/2023No3/52-61.

Soldatov A.I., Soldatov A.A., Sorokin P.V., Loginov E.L., Abouellail A.A., Kozhemyak O.A., Bortalevich S.I. (2016) Control system for device «thermotest». International Siberian Conference on Control and Communications (SIBCON-2016). 1-5. DOI: 10.1109/SIBCON.2016.7491869.

Hu J., Nagy P.B. (1998) On the role of interface imperfections in thermoelectric nondestructive materials characterization. Applied Physics Letters. 73, 467-469. DOI: http://dx.doi.org/10.1063/1.121902.

Abouellail A.A., Chang, J., Soldatov, A.I., Soldatov, A.A.,.Kostina, M.A., Bortalevich, S.I., Soldatov, D.A. (2022) Influence of Destabilizing Factors on Results of Thermoelectric Testing. Russian Journal of Nondestructive Testing. 58(7), 607–616. doi.org/10.1134/S1061830922070026.

Sergeev A.S., Tikhonova Z.S., Uvarova T.V. (2017) Method for measuring thermo-emf of a "tool-workpiece" natural thermocouple in chip forming machining. MATEC Web of Conferences. 129, 01044. DOI: 10.1051/matecconf/201712901044.

Abouellail1 A.A., Kostina M.A., Bortalevich S.I., Loginov E.L., Shinyakov Y.A., Sukhorukov M.P. (2018) Mathematical simulation of thermocouple characteristics. Proceeding of the IOP Conference Series: Materials Science and Engineering. 327(2), 022002. DOI: 10.1088/1757-899X/327/2/022002.

Downloads

Received

2023-11-14

Revised

2024-02-16

Accepted

2024-06-06

Published online

2024-06-29

How to Cite

Soldatov А., Soldatov, A., Abouellail, A., & Kostina, M. (2024). DIRECT CONTACT RESISTANCE MEASUREMENT DURING THERMOELECTRIC TESTING. Eurasian Physical Technical Journal, 21(2(48), 38–48. https://doi.org/10.31489/2024No2/38-48

Issue

Section

Engineering

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

Loading...