FINITE TEMPERATURE EFFECTS WITHIN SCALAR FIELD DARK MATTER MODEL

FINITE TEMPERATURE EFFECTS WITHIN SCALAR FIELD DARK MATTER MODEL

Authors

DOI:

https://doi.org/10.31489/2024No2/92-101

Keywords:

scalar field, dark matter, Bose-Einstein condensate, galaxy rotation curves

Abstract

The distribution of dark matter in four low surface brightness spiral galaxies is studied using two models within the scalar field theory of dark matter, an alternative to the cold dark matter paradigm. The first model is a Bose-Einstein condensate, in which bosons occupy the ground state at zero temperature. The second model includes finite temperature corrections to the scalar field potential, which allows the introduction of excited states. A nonlinear least squares approximation method is used to determine the free parameters of the models, including scale radius, characteristic (central) density and total mass, based on observational data of rotation curves. Quantitative analysis shows the importance of considering finite temperatures at the galactic level. In addition, the two models are compared with results from widely used and accepted phenomenological dark matter profiles such as the isothermal sphere, Navarro-Frank-White and Burkert profiles. The reliability of each model was assessed based on the Bayesian information criterion of completeness. Statistical analysis provides meaningful interpretation of the choice of a particular profile. Ultimately, this study contributes to a better understanding of the distribution of dark matter in low surface brightness spiral galaxies by shedding light on the performance of scalar field models compared to traditional phenomenological profiles.

Author's detail

Suliyeva G.B.

Suliyeva, Gulnara – PhD student, al-Farabi Kazakh National University, Almaty, Kazakhstan; Scopus Author ID: 57818572500; https://orcid.org/0000-0001-5072-7898; g_suliyeva@mail.ru

Kurmanov Ye.B.

Kurmanov, Yergali – PhD, Acting Associate Professor, al-Farabi Kazakh National University, Leading Research Associate at the National Nanotechnology Open Laboratory (NNLOT), Almaty, Kazakhstan; Scopus Author ID: 57695578100; https://orcid.org/0000-0003-3695-0166;kurmanov.yergali@kaznu.kz

Konysbayev T.K.

Konysbayev, Talgar –PhD, Senior Researcher, National Nanotechnology Open Laboratory (NNLOT), al-Farabi Kazakh National University, Almaty, Kazakhstan; Scopus Author ID: 5721980000; https://orcid.org/0000-0001-9476-3700;talgar_777@mail.ru

Boshkayev K.A.

Boshkayev, Kuantay – PhD, Professor, al-Farabi Kazakh National University, Chief Researcher at the National Nanotechnology Open Laboratory (NNLOT), Almaty, Kazakhstan; Scopus Author ID: 54883880400; https://orcid.org/ 0000-0002-1385-270X;kuantay@mail.ru

Urazalina A.A.

Urazalina, Ainur – PhD, Senior Lecturer, al-Farabi Kazakh National University, Leading Research Associate at the National Nanotechnology Open Laboratory (NNLOT), Almaty, Kazakhstan; Scopus Author ID: 57076979300;

Luongo O.

Luongo, Orlando – PhD, Associate Professor, University of Camerino, Camerino, Italy; Scopus Author ID: 35176257700; https://orcid.org/0000-0001-7909-3577;orlando.luongo@unicam.it

References

Zwicky F. (1933) Die rotverschiebung von extragalaktischen nebeln. Helvetica Physica Acta. 6, 110-127. Available at: https://ned.ipac.caltech.edu/level5/March17/Zwicky/frames.html

Rubin V.C., Ford Jr.W. K., Thonnard N. (1980) Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R= 4kpc/to UGC 2885/R= 122 kpc. Astrophysical Journal. 238, 471- 487. Available at: https://articles.adsabs.harvard.edu/pdf/1980ApJ...238..471R DOI: https://doi.org/10.1086/158003

Rubin V.C. (1983) The rotation of spiral galaxies. Science. 220, 4604, 1339-1344, Available at: https://www.science.org/doi/10.1126/science.220.4604.1339 DOI: https://doi.org/10.1126/science.220.4604.1339

Bertone G., Hooper D., Silk J. (2005) Particle dark matter: Evidence, candidates and constraints. Physics reports. 405, 5-6, 279-390. DOI:10.1016/j.physrep.2004.08.031. DOI: https://doi.org/10.1016/j.physrep.2004.08.031

Bennett C.L., Larson D., Weiland J.L., Jarosik N., Hinshaw G., Odegard N., Smith K.M., Hill R.S., Gold B., Halpern M., Komatsu E., Nolta M.R., Page L., Spergel D.N, Wollack E., Dunkley J., Kogut A., Limon M., Meyer S.S., Tucker G.S., Wright E.L. (2013) Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. The Astrophysical Journal Supplement Series. 208, 2, 1-54. Available at: https://iopscience.iop.org/article/10.1088/0067-0049/208/2/20 DOI: https://doi.org/10.1088/0067-0049/208/2/20

Benson A.J. (2010) Galaxy formation theory. Physics Reports. 495, 2-3, 33-86. DOI:10.1016/j.physrep.2010.06.001. DOI: https://doi.org/10.1016/j.physrep.2010.06.001

Larson D., Dunkley J., Hinshaw G., Komatsu E., Nolta M.R., Bennett C.L., Gold B., Halpern M., Hill R.S., Jarosik N., Kogut A., Limon M., Meyer S.S., Odegard N., Page L., Smith K.M., Spergel D.N., Tucker G.S., Weiland J.L., Wollack E. and Wright E.L. (2011) Seven-year wilkinson microwave anisotropy probe (WMAP*) observations: power spectra and WMAP-derived parameters. The Astrophysical Journal Supplement Series. 192(2), 1-19. DOI:10.1088/0067-0049/192/2/16. DOI: https://doi.org/10.1088/0067-0049/192/2/19

Weinberg D.H., Bullock J.S., Governato F., Kuzio de Naray R., Peter H.G. (2015) Cold dark matter: controversies on small scales. Proceedings of the National Academy of Sciences. 112, 40, 12249-12255. DOI:10.1073/pnas.1308716112. DOI: https://doi.org/10.1073/pnas.1308716112

Ji S.U., Sin S.J. (1994) Late-time phase transition and the galactic halo as a Bose liquid. II. The effect of visible matter. Physical Review D. 50, 6, 3655-3659. DOI:10.1103/PhysRevD.50.3655. DOI: https://doi.org/10.1103/PhysRevD.50.3655

Guzmán F.S., Matos T. (2000) Scalar fields as dark matter in spiral galaxies. Classical and Quantum Gravity. 17 (1) L9-L16. DOI:10.1088/0264-9381/17/1/102. DOI: https://doi.org/10.1088/0264-9381/17/1/102

Guzman F.S., Matos T., Villegas H.B. (1999) Scalar fields as dark matter in spiral galaxies: comparison with experiments. Astronomische Nachrichten: News in Astronomy and Astrophysics. 320, 3, 97-104. DOI:10.1002/1521-3994(199907)320:3<97::AID-ASNA97>3.0.CO;2-M. DOI: https://doi.org/10.1002/1521-3994(199907)320:3<97::AID-ASNA97>3.0.CO;2-M

Lee J., Koh I. (1996) Galactic halos as boson stars. Physical Review D. 53, 4, 2236-2239. DOI:10.1103/PhysRevD.53.2236. DOI: https://doi.org/10.1103/PhysRevD.53.2236

Hu W., Barkana R., Gruzinov A. (2000) Fuzzy cold dark matter: the wave properties of ultralight particles. Physical Review Letters. 85, 6, 1158-1161. DOI:10.1103/PhysRevLett.85.1158. DOI: https://doi.org/10.1103/PhysRevLett.85.1158

Schive H.Y., Chiueh T., Broadhurst T. (2014) Cosmic structure as the quantum interference of a coherent dark wave. Nature Physics. 10, 7, 496-499. DOI:10.1038/nphys2996. DOI: https://doi.org/10.1038/nphys2996

Boehmer C.G., Harko T. (2007) Can dark matter be a Bose–Einstein condensate? Journal of Cosmology and Astroparticle Physics. 06, 1-27. DOI:10.1088/1475-7516/2007/06/025. DOI: https://doi.org/10.1088/1475-7516/2007/06/025

Bogoliubov N. (1947) On the theory of superfluidity. J. Phys. 11 (1), 23. Available at: https://inspirehep.net/literature/45477

Robles V.H., Matos T. (2012) Exact solution to finite temperature SFDM: natural cores without feedback. The Astrophysical Journal. 763, 1, 1-8. DOI:10.1088/0004-637X/763/1/19. DOI: https://doi.org/10.1088/0004-637X/763/1/19

Kolb E.W., Turner M.S. (1981) The early universe. Nature. 294, 5841, 521-526. DOI:10.1038/294521a0. DOI: https://doi.org/10.1038/294521a0

Castellanos E., Matos T. (2013) Klein–Gordon Fields and Bose–Einstein Condensates: Thermal Bath Contributions. International Journal of Modern Physics B. 27, 11, p. 1350060. DOI:10.1142/S0217979213500604. DOI: https://doi.org/10.1142/S0217979213500604

Navarro J.F. (1996) The structure of cold dark matter halos. Symposium-international astronomical union. 171, 255-258. DOI:10.48550/arXiv.astro-ph/9511016. DOI: https://doi.org/10.1017/S0074180900232452

Burkert A. (1995) The structure of dark matter halos in dwarf galaxies. The Astrophysical Journal. 447, 1, L25-L28. DOI:10.1086/309560. DOI: https://doi.org/10.1086/309560

Jimenez R., Verde L., Oh S.P. (2003) Dark halo properties from rotation curves. Monthly Notices of the Royal Astronomical Society. 339, 1, 243-259. DOI:10.1046/j.1365-8711.2003.06165.x. DOI: https://doi.org/10.1046/j.1365-8711.2003.06165.x

Levenberg K. (1944) A method for the solution of certain non-linear problems in least squares. Quarterly of applied mathematics. 2 (2), 164-168. DOI:10.1090/qam/10666. DOI: https://doi.org/10.1090/qam/10666

Marquardt D.W. (1963) An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics. 11, 2, 431-441. Available at: https://www.jstor.org/stable/2098941. DOI: https://doi.org/10.1137/0111030

Lelli F., McGaugh S.S., Schombert J.M. (2016) SPARC: Mass models for 175 disk galaxies with Spitzer photometry and accurate rotation curves. The Astronomical Journal. 152, 6, 1-14. DOI:10.3847/0004-6256/152/6/157. DOI: https://doi.org/10.3847/0004-6256/152/6/157

Kurmanov Ye., Boshkayev K., Konysbayev T., Muccino M., Urazalina A., Ikhsan G., Saiyp N., Rabigulova G, Karlinova M., Suliyeva G., Taukenova A. and Beissen N. (2023) Analysis of dark matter profiles in the halos of spiral galaxies. Physical Sciences and Technology. 10, 3-4, 4-16. DOI:10.26577/phst.2023.v10.i2.01. DOI: https://doi.org/10.26577/phst.2023.v10.i2.01

Boshkayev K., Konysbayev T., Kurmanov E., Muccino M. (2020) Dark matter properties in galaxy U5750. News of the National Academy of Sciences of the Republic of Kazakhstan physico-mathematical series. 6, 81-90. DOI:10.32014/2020.2518-1726.101. DOI: https://doi.org/10.32014/2020.2518-1726.101

Boshkayev K., Konysbayev T., Kurmanov E., Muccino M., Zhumakhanova G. (2020) Physical properties of dark matter in galaxy U11454. Physical sciences and technology, 7, 11-20. DOI:10.26577/phst.2020.v7.i2.02. DOI: https://doi.org/10.26577/phst.2020.v7.i2.02

Boshkayev K., Konysbayev T., Kurmanov E., Luongo O., Muccino M. (2020) Imprint of pressure on characteristic dark matter profiles: the case of ESO0140040. Galaxies. 2020, 74, 1-13. DOI:10.3390/galaxies8040074. DOI: https://doi.org/10.3390/galaxies8040074

Boshkayev K., Zhumakhanova G., Mutalipova K., Muccino M. (2019) Investigation of different dark matter profiles. News of the National Academy of Sciences of the Republic of Kazakhstan Physical and Mathematical Series. 6, 328, 25-33. DOI:10.32014/2019.2518-1726.70. DOI: https://doi.org/10.32014/2019.2518-1726.70

Sofue Y. (2015) Dark halos of M 31 and the Milky Way. Publications of the Astronomical Society of Japan. 67, 4, 75-84. DOI:10.1093/pasj/psv042. DOI: https://doi.org/10.1093/pasj/psv042

Salucci P. (2019) The distribution of dark matter in galaxies. The Astronomy and Astrophysics Review. 27, 1 – 60. DOI:10.1007/s00159-018-0113-1. DOI: https://doi.org/10.1007/s00159-018-0113-1

Boshkayev K.,Konysbayev T., Kurmanov Ye., Luongo O., Muccino M., Quevedo H., Zhumakhanova G. (2024) Numerical analyses of M31 dark matter profiles. 33, 03-04. DOI:10.1142/S0218271824500160. DOI: https://doi.org/10.1142/S0218271824500160

Downloads

Received

2024-04-07

Revised

2024-04-17

Accepted

2024-06-18

Published online

2024-06-29

How to Cite

Suliyeva, G., Kurmanov, Y., Konysbayev, T., Boshkayev, K., Urazalina, A., & Luongo, O. (2024). FINITE TEMPERATURE EFFECTS WITHIN SCALAR FIELD DARK MATTER MODEL. Eurasian Physical Technical Journal, 21(2(48), 92–101. https://doi.org/10.31489/2024No2/92-101

Issue

Section

Physics and Astronomy

Similar Articles

You may also start an advanced similarity search for this article.

Loading...