Гравитациялық толқын сигналдарын информациялық-энтропиялық анықтау
DOI:
https://doi.org/10.31489/2023No2/79-86Кілт сөздер:
гравитациялық толқындар, информация-энтропия, сигналдарды анықтау, бейсызық процессАңдатпа
GW гравитациялық толқындарының жұптасқан қара құрдымдардан табылуы GW астрономия дәуірінің басталуының белгісі болды. Дәстүрлі түрде, эксперименттік деректерден GW сигналдарын алу үшін ғылыми топтар келісілген фильтрацияның стандартты әдісін қолданады. Теориялық күтулерден тыс GW сигналдарын табуды қиындататын белгілі сигнал үлгілері қолданылады. Сонымен қатар, қолданатын белгілі сигнал үлгілерінің санына байланысты келісілген фильтрдің есептеу құны өте жоғары болып келеді. Бұл мақалада біз теориялық сигнал шаблондарын қажет етпейтін GW сигналдарын анықтаудың жаңа информациялық-энтропиялық әдісін ұсынамыз. Біздің әдісіміздің сенімділігін көрсету үшін біз модельденген және нақты деректерді қолдана отырып талдау жасадық. Осы зерттеу барысында біз шартты информация өлшемі GW сигналдарын анықтайтынын және оны келісілген фильтрация әдісімен бірге қолдануға болатынын анықтадық.
References
Abbott Benjamin P., et al. Observation of gravitational waves from a binary black hole merger. Physical review letters, 2016, 116.6: 061102. doi:10.1103/PhysRevLett.116.061102
Scientific L.I.G.O., et al. GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Physical review letters, 2017, 118.22, 221101. doi:10.1103/PhysRevLett.118.221101
Abbott Benjamin P., et al. GW170608: observation of a 19 solar-mass binary black hole coalescence. The Astrophysical Journal Letters, 2017, 851.2, L35. doi: 10.3847/2041-8213/aa9f0c
Abbott Benjamin P., et al. GW170817: observation of gravitational waves from a binary neutron star inspiral." Physical review letters, 2017, 119.16, 161101. doi: 10.1103/PhysRevLett.119.161101
Abbott Benjamin P., et al. GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Physical review letters, 2017, 119.14, 141101. doi: 10.1103/PhysRevLett.119.141101
Abbott R., et al. GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. arXiv preprint arXiv:2111.03606 (2021). doi: 10.48550/arXiv.2111.03606
Arnaud Nicolas. LIGO and Virgo detector characterization and data quality: Contributions to the O3 run and preparation for O4. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1048, 167945. doi: 10.1016/j.nima.2022.167945
Razzano Massimiliano, et al. GWitchHunters: Machine learning and citizen science to improve the performance of gravitational wave detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1048, 167959. doi: 10.1016/j.nima.2022.167959
Schäfer Marlin B., et al. Training strategies for deep learning gravitational-wave searches. Physical Review D, 2022, 105.4, 043002. doi: 10.1103/PhysRevD.105.043002
Xia H., Shao L., Zhao J., Cao Z. Improved deep learning techniques in gravitational-wave data analysis. Physical Review D, 2021, 103(2), 024040. doi: 10.1103/PhysRevD.103.024040
Gabbard Hunter, et al. Matching matched filtering with deep networks for gravitational-wave astronomy. Physical review letters, 2018, 120.14, 141103. doi: 10.1103/PhysRevLett.120.141103
Aveiro João, et al. Identification of binary neutron star mergers in gravitational-wave data using object-detection machine learning models. Physical Review D, 2022, 106.8, 084059. doi 10.1103/PhysRevD.106.084059
Zhang Zhen, et al. Modulation signal recognition based on information entropy and ensemble learning. Entropy, 2018, 20.3, 198. doi: 10.3390/e20030198
Wang, Hui, et al. A new method of cognitive signal recognition based on hybrid information entropy and DS evidence theory. Mobile Networks and Applications, 2018, 23, 677-685. doi: 10.1007/s11036-018-1000-8
Li Han, Yanzhu Hu, Song Wang. A novel blind signal detector based on the entropy of the power spectrum subband energy ratio. Entropy, 2021, 23.4, 448. doi: 10.3390/e23040448
Kraskov A., Stögbauer H., Grassberger P. Estimating mutual information. Physical review, 2004, E 69.6, 066138. doi: 10.1103/PhysRevE.69.066138
Li Wentian. Mutual information functions versus correlation functions. Journal of statistical physics, 1990, 60, 823-837. doi: 10.1007/BF01025996
Jun Xie, et al. Conditional entropy based classifier chains for multi-label classification. Neurocomputing, 2019, 335, 185-194. doi: 10.1016/j.neucom.2019.01.039
Gu Rongbao. Multiscale Shannon entropy and its application in the stock market. Physica A: Statistical Mechanics and its Applications, 2017, 484, 215-224. doi: 10.1016/j.physa.2017.04.164
Liu Jerry, et al. Conditional entropy coding for efficient video compression. Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII. Cham: Springer International Publishing, 2020. doi: 10.1007/978-3-030-58520-4_27
Mentzer Fabian, et al. Conditional probability models for deep image compression. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. doi: 10.48550/arXiv.1801.04260
Holodinsky Jessalyn K., et al. Drip and ship versus direct to endovascular thrombectomy: the impact of treatment times on transport decision-making. European Stroke Journal, 2018, 3.2, 126-135. doi: 10.1177/2396987318759362
Ackerman Nathanael L., Cameron E. Freer, Daniel M. Roy. On the computability of conditional probability. Journal of the ACM (JACM), 2019, 66.3, 1-40. doi: 10.1145/3321699
Berlin S. Jeba, Mala John. Spiking neural network based on joint entropy of optical flow features for human action recognition. The Visual Computer, 2022, 38.1, 223-237. doi: 10.1007/s00371-020-02012-2
Zhang Gengxi, et al. Modeling NDVI using Joint Entropy method considering hydro-meteorological driving factors in the middle reaches of Hei river basin. Entropy, 2017, 19.9, 502. doi: 10.3390/e19090502
Safarihamid Kimia, Alireza Pourafzal, Alireza Fereidunian. A joint-entropy approach to time-series classification. 2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS). IEEE, 2021. doi: 10.1109/ICSPIS54653.2021.9729371
itz A.H., Harry I.W., Willis J.L., Biwer C.M., Brown D.A., Pekowsky L.P., Dal Canton T., Williamson A.R., Dent T., Capano C.D., et al. Pycbc software, GitHub repository, 2017.
Abbott Benjamin P., et al. GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Physical review letters, 2016, 116.24, 241103. doi: 10.1103/PhysRevLett.116.241103