Құйынды ток әдісін қолдануымен жұқа қабықшалардың өткізгіштігін автоматтандырылған бақылау

Құйынды ток әдісін қолдануымен жұқа қабықшалардың өткізгіштігін автоматтандырылған бақылау

Авторлар

DOI:

https://doi.org/10.31489/2024no1/74-83

Кілт сөздер:

құйынды ток түрлендіргіші, электр өткізгіштік, жұқа қабықшалар, мыс, бұзбайтын бақылау

Аңдатпа

Мақалада жұқа металл қабықшалардың электр өткізгіштігін өлшеу есептері үшін бұзбайтын бақылаудың құйынды ток әдісін қолдану мүмкіндігі қарастырылған. Өлшеу объектісі ретінде вакуумдағы газ фазасынан тұндыру әдісімен алынған әртүрлі қалыңдықтағы мыс қабықшалары қолданылды. Қазіргі заманғы өнеркәсіп пен ғылымда мыс қабықшаларын қолданудың өзекті бағыттарына шолу жасалып, жұқа мыс қабықшаларын зерттеуге жарамды бұзбайтын бақылаудың өзекті әдістеріне талдау жасалды. Қабықшаның электр өткізгіштігін өлшеуге арналған бүрку әдісі мен бағдарламалық-аппараттық кешеннің қысқаша сипаттамасы берілген. Қабықшаның электр өткізгіштік мәндерін құйынды ток түрлендіргішінің дабылы мәні бойынша қалпына келтіруге мүмкіндік беретін калибрлеу қисығы келтірілген. Калибрлеу қисығын құру үшін GaAs галлий арсенидінің үлгілері алынды. Бұл шешім берілген химиялық қосылыстың электр өткізгіштік мәндерінің алынған жұқа қабықшалардың есептелген көрсеткіштеріне жақындығымен түсіндіріледі, әртүрлі сипаттамалары бар қабықшаларды сынау нәтижелері ұсынылған және партияға байланысты қабықшалардың электр өткізгіштігінің таралуы көрсетілген. Жұқа қабықшаларды практикалық өлшеу сериясы бүркуге ұшыраған бастапқы заттың массасы мен алынған қабықшалардың сипаттамалары арасындағы байланыстың бар екендігін көрсетті. Электр өткізгіштігінің әртүрлі мәндері бойынша бір партия шеңберінде әртүрлі қабықшаларды бүрку сапасының айырмашылығы туралы қорытынды жасалды.

References

Sophian A., Tian G.Y. Electromagnetic and eddy current NDT: A review. Insight, 2001, Vol. 43, pp. 302–306. https://www.researchgate.net/publication/282684852_Electromagnetic_and_eddy_current_NDT_A_review

Auld B.A., Moulder J.C. Review of Advances in Quantitative Eddy Current Nondestructive Evaluation. J. Nondestruct. Eval., 1999, Vol. 18, pp. 3–36. https://doi.org/10.1023/A:1021898520626

Garcia-Martin J., Gomez-Gil J., Vazquez-Sanchez E. Non-Destructive Techniques Based on Eddy Current Testing. Sens., 2011, Vol. 11, pp. 2525–2565. https://doi.org/10.3390/s110302525

Lee H., Jane E., Kevin M. Low Frequency Eddy Current Testing of Insulators and Composites. J. of Nondestr. Eval., 2018, Vol. 37, pp. 58-70. https://doi.org/10.1007/s10921-018-0513-1

Mizukami K., Mizutani Y., Kimura K., Sato A. Visualization and size estimation of fiber waviness in multidirectional CFRP laminates using eddy current imaging. Compos. Part A., 2016, Vol. 90, pp. 261–70. https://doi.org/10.1016/j.compositesa.2016.07.008

Gao B., Lu P., Woo W. L., Tian G. Y., Zhu Y., Johnston M. Variational Bayesian subgroup adaptive sparse component extraction for diagnostic imaging system. IEEE Trans. Ind. Electron, 2018, Vol. 65, No 10, pp. 8142–8152. https://doi.org/10.1109/TIE.2018.2801809

Abidin I. Z., Tian G. Y., Wilson J., Yang S., Almond D. Quantitative evaluation of angular defects by pulsed eddy current thermography. NDT E Int., 2010, Vol. 43, No 7., pp. 537–546. http://dx.doi.org/10.1016/j.ndteint.2010.05.010

Cheng L., Tian G. Y. Surface crack detection for carbon fiber reinforced plastic (CFRP) materials using pulsed eddy current thermography. IEEE Sensors J., 2011, Vol. 11, No 12, pp. 3261-3268. https://doi.org/10.1109/JSEN.2011.2157492

Zijun W., Junzhen Z., Gui Yun T., Francesco C. Comparative analysis of eddy current pulsed thermography and long pulse thermography for damage detection in metals and composites. NDT E Int., 2019, Vol. 107, pp. 102–155. https://doi.org/10.1016/j.ndteint.2019.102155

Zhu Q., Zhang X., Li S., Liu C. Communication-electrodeposition of nano-twinned Cu in void-free filling for blind microvia of high density interconnect. Journal of The Electrochemical Society, 2019, Vol. 166, No 1, pp. 3097-3099. https://doi.org/10.1149/2.0131901jes

Liang C.L., Lin K.L. Non-equilibrium supersaturation behavior in a Cu/Sn/Cu interconnect induced by room temperature electromigration. Journal of Alloys and Compounds, 2019, Vol. 789, No 15, pp.336-344. https://doi.org/10.1016/j.jallcom.2019.03.055

Baklanov M.R., Adelmann C., Zhao L., Gendt S.D. Advanced interconnects: materials, processing, and reliability. ECS Journal of Solid State Science and Technology, 2015, Vol. 4, No 1, Y1-Y4. https://doi.org/10.1149/2.0271501jss

Shang J., Hao J.X., Hang T., Li M. Diffusion barrier effect of Ta/Ti bilayer in organic dielectric/Cu interconnects. Thin Solid Films, 2018, Vol. 653, No 1, pp.113-118. https://doi.org/10.1016/j.tsf.2018.03.025

Mardani S., Norström H., Smith U. Electromigration behavior of Cu metallization interfacing with Ta versus TaN at high temperatures. Journal of Vacuum Science & Technology, 2016, Vol. B, 34. http://dx.doi.org/10.1116/1.4967372

Laurila T., Zeng K., Kivilahti J.K. Failure mechanism of Ta diffusion barrier between Cu and Si. Journal of Applied Physics, 2000, Vol. 88, pp. 3377-3384. https://doi.org/10.1063/1.1288692

Ono H., Nakano T., Ohta T. Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M=Cr, Ti, Nb, Mo, Ta, W). Applied Physics Letters, 1994, Vol. 64, No. 12, pp.1511-1513. https://doi.org/10.1063/1.111875

Fang J.S., Chen J.H., Chen G.S., Cheng Y.L., Chin T.S. Sequential growth of copper film on TaN/Ta barrier substrates by alternation of Pb-UPD and Cu-SLRR. Electrochimica Acta, 2016, Vol. 206, No.10, pp. 45-51. https://doi.org/10.1016/j.electacta.2016.04.129

Lane M., Dauskardt R.H. Adhesion and reliability of copper interconnects with Ta and TaN barrier layers. Journal of Materials Research, 2000, Vol. 15, No 1. pp. 203-211. https://doi.org/10.1557/JMR.2000.0033

Zantye P.B., Kumar A., Sikder A.K. Chemical mechanical planarization for microelectronics applications. Materials Science and Engineering: R: Reports, 2004, Vol. 45, No 3-6, pp. 89-220. https://doi.org/10.1016/j.mser.2004.06.002

Wrschka P., Hernandez J., Oehrlein G.S. Chemical mechanical planarization of copper damascene structures. Journal of The Electrochemical Society, 2000, Vol. 147, No. 2, pp. 706-712. https://doi.org/10.1149/1.1393256

Xu Q., Fang J., Chen L. A chip-scale chemical mechanical planarization model for copper interconnect structures. Microelectronic Engineering, 2016, Vol. 149, No 5, pp.14-24. https://doi.org/10.1016/j.mee.2015.08.012

Bowler N., Huang Y.Q. Electrical conductivity measurement of metal plates using broadband eddy-current and four-point methods. Measurement Science and Technology, 2006, Vol. 16, No 11, pp. 2193-2200. https://doi.org/10.1088/0957-0233/16/11/009

Fujita T., Kitade K. Development of endpoint detection using optical transmittance and magnetic permeability based on skin effect in chemical mechanical planarization. Precision Engineering, 2019, Vol. 57, pp. 95-103. https://doi.org/10.1016/j.precisioneng.2019.03.004

Wang Z., Yu Y. Thickness and Conductivity Measurement of Multilayered Electricity-Conducting Coating by Pulsed Eddy Current Technique: Experimental Investigation. IEEE Transactions on Instrumentation and Measurement, 2019, Vol. 68, No 9, pp.3166-3172. https://doi.org/10.1109/TIM.2018.2872386

Kjeldby S.B., Evenstad O.M., Cooil S.P., Wells J.W. Probing dimensionality using a simplified 4-probe method. Journal of Physics: Condensed Matter, 2017, Vol. 29, No 39, pp.1-6. https://doi.org/10.1088/1361-648X/aa8296

Kim M.G., Pahk H.J. Fast and reliable measurement of thin film thickness profile based on wavelet transform in spectrally resolved whitelight interferometry. International Journal of Precision Engineering and Manufacturing, 2018, Vol. 19, No 2, pp. 213-219. https://doi.org/10.1007/s12541-018-0024-0

Dmitriev S.F., Malikov V.N., Ishkov A.V. Application of an eddy-current method to measure electrical conductivity of thin films. IOP Conf. Series: Materials Science and Engineering, 2018, Vol. 441, 012029. https://doi.org/10.1088/1757-899X/441/1/012029

Li W., Wang H., Feng Z. Non-contact online thickness measurement system for metal films based on eddy current sensing with distance tracking technique. Review of Scientific Instruments, 2016, Vol. 87, No 4, pp. 1-9. https://doi.org/10.1063/1.4947234

Wang H., Li W., Feng Z. Noncontact thickness measurement of metal films using eddy-current sensors immune to distance variation. IEEE Transactions on Instrumentation and Measurement, 2015, Vol. 64, No 9, pp. 2557-2564. https://doi.org/10.1109/TIM.2015.2406053

Li W., Ye Y., Zhang K. A thickness measurement system for metal films based on eddy current method with phase detection. IEEE Transactions on Industrial Electronics, 2017, Vol. 64, No. 5, pp. 3940-3949. https://doi.org/10.1109/TIE.2017.2650861

Sakran F., Golosovsky M., Goldberger H. High frequency eddy-current technique for thickness measurement of micronthick conducting layers. Applied Physics Letters, 2001, Vol. 78, No 11, pp. 1634-1636. https://doi.org/10.1063/1.1355298

Yin W.L., Xu K. A novel triple-coil electromagnetic sensor for thickness measurement immune to lift-off variations. IEEE Transactions on Instrumentation and Measurement, 2016, Vol. 65, No 1, pp. 164-169. https://doi.org/10.1109/TIM.2015.2479106

Porada O.K., Ivashchenko V.I. Plasma-Enhanced CVD Equipment for Deposition of Nanocomposite Nanolayered Films. Journal of Superhard Materials, 2019, Vol. 41, pp. 32-37. https://doi.org/10.3103/S106345761901004

Downloads

Жарияланды

2024-03-29

How to Cite

Маликов, В., Ишков, А., Войнаш, С., Загидуллин, Р., & Сабитов, Л. (2024). Құйынды ток әдісін қолдануымен жұқа қабықшалардың өткізгіштігін автоматтандырылған бақылау. Eurasian Physical Technical Journal, 21(1(47), 74–83. https://doi.org/10.31489/2024no1/74-83

Журналдың саны

Бөлім

Инженерия (техникалық физика)

Most read articles by the same author(s)

Loading...