Коллиматорный и телескопический режимы катодной линзы.
DOI:
https://doi.org/10.31489/2025N4/123-131Ключевые слова:
электронная оптика, электростатическая линза, параксиальная оптика, распределение потенциалаАннотация
Один из способов улучшения характеристик эмиссионных систем (электронных микроскопов, микрофокусных рентгеновских трубок и др.) заключается в снижении аберраций катодной линзы. Такое снижение возможно лишь на основе глубокого теоретического анализа их электронно-оптических схем. В рамках настоящих исследований сделана попытка разработки средств моделирования катодной линзы с практически произвольной конфигурацией электродов в параксиальном приближении, определены условия реализации коллиматорного и телескопического режимов. Изучена взаимосвязь параметров, обеспечивающих указанные режимы работы линзы. Разработаны электронно-оптические схемы, гарантирующие коллиматорный и телескопический режимы катодной линзы реальной (неидеализированной) конструкции.
Библиографические ссылки
Guo X. (2024) The Schottky emitter as a source for multi-electron-beam instruments. Dissertation (TU Delft), Delft University of Technology. doi.org/10.4233/uuid:304cdd73-083a-4f89-ad47- f192e84a5313
Ohsawa S., Ikeda M., Sugimura T., Tawada M., Hozumi Y. and Kanno K. (2005) High Brightness Electron Gun for X-Ray Source. Proceedings of the 2005 Particle Accelerator Conference, Knoxville, TN, USA. 1488-1490. doi: 10.1109/PAC.2005.1590809. DOI: https://doi.org/10.1109/PAC.2005.1590809
Hideo Morishita, Takashi Ohshima, Kazuo Otsuga, Makoto Kuwahara, Toshihide Agemura, Yoichi Ose (2021) Brightness evaluation of pulsed electron gun using negative electron affinity photocathode developed for time-resolved measurement using scanning electron microscope. Ultramicroscopy, 230, 113386. doi.org/10.1016/j.ultramic.2021.113386. DOI: https://doi.org/10.1016/j.ultramic.2021.113386
Bronsgeest M. S., Barth J. E., Swanson L. W., Kruit P. (2008) Probe current, probe size, and the practical brightness for probe forming systems. Journal of Vacuum Science & Technology B. 26 (3), 949-955. doi: 10.1116/1.2907780 DOI: https://doi.org/10.1116/1.2907780
Han C, Sul I, Cho B. (2017) Edge shadow projection method for measuring the brightness of electron guns. Rev Sci Instrum, 88(2), 023302. doi: 10.1063/1.4974956. DOI: https://doi.org/10.1063/1.4974956
Lauer R. (2020) Characteristics of triode electron guns. In P. W. Hawkes (Ed.), Advances in imaging and electron physics, 215. 195–266. Academic Press, London. doi.org/10.1016/bs.aiep.2020.06.007. DOI: https://doi.org/10.1016/bs.aiep.2020.06.007
Kuriki M. (2022) Theoretical limit of electron beam brightness generated from electron guns. Proceedings of the 19th Annual Meeting of Particle Accelerator Society of Japan, October 18 – 21, Kyushu University, 1065-1069.
Fujita S, Shimoyama H. (2005) A new evaluation method of electron optical performance of high beam current probe forming systems. J Electron Microsc (Tokyo). 54(5), 413-427. doi: 10.1093/jmicro/dfi063. DOI: https://doi.org/10.1093/jmicro/dfi063
Cardona J. D., DietrichIsh k., Mukul M. et al. (2022) Simulations of a new electron gun for the TITAN EBIT. Journal of Physics: Conference Series 2244, 012075. doi:10.1088/1742-6596/2244/1/012075. DOI: https://doi.org/10.1088/1742-6596/2244/1/012075
Wang RC., Jiao JQ., Zang K. et al. (2025) Development of pulsed electron gun based on PIC simulation. Radiat Detect Technol Methods. https://doi.org/10.1007/s41605-025-00591-z. DOI: https://doi.org/10.1007/s41605-025-00591-z
Sushkov A.D. (2022) Vacuum Electronics. Physical and Technical Foundations. Lan, St. Petersburg. 464. [in Russian]. Available at: https://lanbook.com/catalog/inzhenerno-tekhnicheskie-nauki/vakuumnaya-elektronika-fiziko-tehnicheskie-osnovy-3883606/?utm_source
Hawkes P.W. (1972) Electron Optics and Electron Microscopy. Taylor & Francis Ltd., London, 244. https://doi.org/10.1002/crat.19720071212 DOI: https://doi.org/10.1002/crat.19720071212
Smirnov V.I. (1974) Course of Higher Mathematics, Vol. 3, Part 2. Nauka, Moscow, 672. [in Russian] Available at: https://www.litres.ru/book/vladimir-smirnov-3/kurs-vysshey-matematiki-tom-iii-chast-2-6988781/ ?utm_source
Yakushev E.M. (2013) Theory and Computation of Electron Mirrors: The Central Particle Method. In P. W. Hawkes (Ed.), Advances in imaging and electron physics, 178. 147–247. Academic Press, London. https://doi.org/10.1016/B978-0-12-407701-0.00003-0 DOI: https://doi.org/10.1016/B978-0-12-407701-0.00003-0
Yakushev E.M., Bimurzaev S.B., & Kholodov M.A. (2016) To Determine the Cardinal Elements and Angular Characteristics of Cathode Lenses with Rotational Symmetry. Bulletin of the Aktobe Regional State University named after K. Zhubanov, 44(2), 32 – 40. [in Russian] Available at: https://vestnik.arsu.kz/ index.php/hab/issue/view/12/18
Trubitsyn A.A., Grachev E.Yu., &Kochergin E.G. (2024) Focus CL Program for Modeling Cathode Lenses. Certificate of State Registration of Computer Program No. 2024680471. [in Russian]
Brebbia C.A., Telles J.C.F., Wroubel L.C. (2012) Boundary Element Techniques: Theory and Applications in Engineering. Springer Berlin Heidelberg, 464. https://doi.org/10.1007/978-3-642-48860-3 DOI: https://doi.org/10.1007/978-3-642-48860-3
Korn G.A., Korn T.M. (2013) Mathematical Handbook for Scientists and Engineers. Dover Publications Inc, NY. 1152. Available at: https://www.scribd.com/document/530807645/Mathematics-Handbook-for-Scientists-and-Engineers?utm_source=chatgpt.com
Abramovits M., Stigan I.A. (1965) Handbook of Special Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications Inc, NY. 1046. Available at: https://personal.math.ubc.ca/~cbm/aands/abramowitz _and_stegun.pdf
Trubitsyn A.A., Grachev E.Yu., & Kochergin E.G. (2025) Telescopic Mode of a Cathode Lens. Pis'ma v zhurnal tekhnicheskoy fiziki, 51 (13), 32 – 36. [in Russian]. https://doi.org/10.61011/PJTF.2025.13.60701.20284 [in Russian]
Gurov V.S., Saulebekov A.O., & Trubitsyn A.A. (2015) Analytical, Approximate-Analytical and Numerical Methods in the Design of Energy Analyzers. In P. W. Hawkes (Ed.), Advances in Imaging and Electron Physics, 192. Academic Press, London, 212. https://doi.org/10.1016/S1076-5670(15)00103-2 DOI: https://doi.org/10.1016/S1076-5670(15)00103-2
Trubitsyn A.A. (2001) A Correlation Method of Search for Higher-Order Angular Focusing. Technical Physics, 46 (5), 630-631. https://doi.org/10.1134/1.1372960 DOI: https://doi.org/10.1134/1.1372960













