Начальный состав как дополнительный параметр, определяющий поведение плавления наночастиц (на примере системы Six – Ge1- x)

Начальный состав как дополнительный параметр, определяющий поведение плавления наночастиц (на примере системы Six – Ge1- x)

Авторы

DOI:

https://doi.org/10.31489/2021No4/5-13

Ключевые слова:

фазовые равновесия, наночастицы, плавление, кремний, германий.

Аннотация

Являясь одним из основных материалов современной полупроводниковой электроники, сплавы системы Si-Ge имеют широкий спектр разнообразных технологических приложений. В настоящей работе фазовые равновесия в наночастицах Si-Ge смоделированы в рамках термодинамического подхода. Расчеты показывают, что наночастицам различного диаметра и состава соответствуют различные наборы температур «нано-ликвидуса» и «нано-солидуса», отличающиеся от соответствующих значений для структур макроскопического размера, в то время как температурный интервал между «нано-ликвидусом» и «нано-солидусом» сокращается с уменьшением размера частицы. В отличие от макроразмерных структур, составы сосуществующих жидких и твердых фаз при заданной температуре в наночастицах с различным содержанием Si существенно различаются, а характер зависимостей составов и объемной доли сосуществующих фаз от диаметра наночастицы определяется температурой и долей Si в частице. Представлена термодинамическая интерпретация полученных результатов на основе различных механизмов понижения свободной энергии системы.

Библиографические ссылки

"1 Haddara Y.M., Ashburn P., Bagnall D.M. Silicon-germanium: properties, growth and applications. In: S. Kasap, P. Capper (eds.) Springer handbook of electronic and photonic materials, Springer handbooks. Cham, Springer, 2017, pp. 523 – 541. www.doi.org/10.1007/978-3-319-48933-9_22.

Vivien L., Polzer A., Marris-Morini D., et al. Zero-bias 40Gbit/s germanium waveguide photodetector on silicon. Optics express. 2012, Vol. 20, pp. 1096 – 1101. www.doi.org/10.1364/OE.20.001096.

Alloatti L., Srinivasan S.A., Orcutt J.S., et al. Waveguide-coupled detector in zero-change complementary metal–oxide–semiconductor. Appl. phys. lett. 2015, Vol. 107, No. 041104. www.doi.org/10.1063/1.4927393.

Choi J.H. High-speed devices and circuits with THz applications. Boca-Raton, CRC Press, 2017, 261 p.

Verma A.K., Modak P., Svane A., et al. Atomic structure and electronic properties of the SixSb100-x phase-change memory material. Phys. rev. B. 2011, Vol. 130, No. 134205. www.doi.org/10.1103/PhysRevB.83.134205.

Rowe D.M. (ed.) Thermoelectric handbook macro to nano. Boca Raton, CRC Press. 2006. 1008 p.

Dorokhin M.V., Erofeeva I.V., Kuznetsov Yu.M., et al. Investigation of the initial stages of spark-plasma sintering of Si-Ge based thermoelectric materials. Nanosyst.: phys., chem., math. 2018, Vol. 9, pp. 622 – 630. www.doi.org/10.17586/2220-8054-2018-9-5-622-630.

Shishulin A.V., Fedoseev V.B., Shishulina A.V. Phonon thermal conductivity and phase equilibria of fractal Bi-Sb nanoparticles. Tech. phys. 2019, Vol. 64, No. 4, pp. 512-517. www.doi.org/10.1134/S1063784219040200.

Le Dantec M., Abdulstaar M., Leistner M., et al. Additive manufacturing of semiconductor silicon on silicon using direct laser melting. In: Industrializing additive manufacturing - proceedings of additive manufacturing in products and applications (AMPA-2017). 2017, pp. 104 – 116. www.doi.org/10.1007/978-3-319-66866-6_10.

Olesinski R.W., Abbaschian G.J. The Ge-Si (germanium-silicon) system. Bull. alloy phase diagram. 1984, Vol. 5, p. 180. www.doi.org/10.1007/BF02868957.

Ricci E., Amore S., Giuranno D., et al. Surface tension and density of Si-Ge melts. J. chem. phys. 2014,

Vol. 140, No. 214704. www.doi.org/10.1063/1.4879775.

Wang Q., Chang J., Wang H.P. Thermodynamical properties and atomic structure of liquid Si-Ge alloys. Mater. chem. phys. 2019, Vol. 221, pp. 224 – 231. www.doi.org/10.1016/j.matchemphys.2018.09.043.

Liang L.H., Liu D., Jiang Q. Size-dependent continuous binary solution phase diagram. Nanotechnology. 2003, Vol. 14, pp. 438 – 442. www.doi.org/10.1088/0957-4484/14/4/306.

Bajaj S., Haverty M.G., Arróyave R., et al. Phase stability in nanoscale material systems: extensions from bulk phase diagrams. Nanoscale. 2015, Vol. 7, No. 9868. www.doi.org/10.1039/C5NR01535A.

Bonham B., Guisbiers G. Thermal stability and optical properties of Si-Ge nanoparticles. Nanotechnology. 2019, Vol. 28, No. 245702. www.doi.org/10.1088/1361-6528/aa726b.

Fedoseev V.B., Potapov A.A., Shishulin A.V., Fedoseeva E.N. Size and shape effect on the phase transitions in a small system with fractal interphase boundaries. Eurasian phys. tech. j. 2017, Vol. 14, No.1, pp. 18 – 24.

Shishulin A.V., Fedoseev V.B. On some peculiarities of stratification of liquid solutions within pores of fractal shape. J. mol. liq. 2019, Vol. 278, pp. 363 – 367. https://doi.org/10.1016/j.molliq.2019.01.050.

Shishulin A.V., Fedoseev V.B., Shishulina A.V. Melting behavior of fractal-shaped nanoparticles (the example of Si-Ge system). Tech. phys. 2019, Vol. 64, No. 9, pp. 1343 – 1349. https://doi.org/10.1134/S1063784219090172.

Shishulin A.V., Potapov A.A., Fedoseev V.B. Phase equilibria in fractal core-shell nanoparticles of Pb5(VO4)3Cl – Pb5(PO4)3Cl system: the influence of size and shape. Advances in artificial systems for medicine and education II. Cham., Springer. 2020, pp. 405 – 413. https://doi.org/10.1007/978-3-030-12082-5_37.

Shishulin A.V., Fedoseev V.B. Thermal stability and phase composition of stratifying polymer solutions in small-volume droplets. J. eng. phys. thermophys. 2020, Vol. 93, No. 4, pp. 802 – 809. www.doi.org/10.1007/s10891-020-02182-9.

Mendoza-Pérez R., Muhl S. Phase diagrams of refractory bimetallic nanoalloys. J. nanopart. res. 2020,

Vol. 22, No. 36. www.doi.org/10.1007/s11051-020-05035-x.

Geoffrion L.-D., Guisbiers G. Chemical ordering in Bi1-xSbx nanostructures: alloy, janus or core-shell. J. phys. chem. C. 2020, Vol. 124, No. 25, pp. 14061 – 14068. www.doi.org/10.1021/acs.jpcc.0c04356.

Shishulin A.V., Fedoseev V.B., Shishulina A.V. Environment-dependent phase equilibria in a small-volume system in the case of decomposition of Bi-Sb solid solutions. Butlerov commun. 2017. Vol. 51, No. 7, pp. 31 – 37 [in Russian].

Straumal B., Baretzky B., Mazilkin A., et al. Increase of Mn solubility with decreasing grain size in ZnO. J.Eur. ceram. soc. 2009, Vol. 29, pp. 1963 – 1970. www.doi.org/10.1016/j.jeurceramsoc.2009.01.005.

Shishulin A.V., Fedoseev V.B. Effect of initial composition on the liquid-solid phase transition in Cr-W alloy nanoparticles. Inorg. mater. 2019, Vol. 55, no. 1, pp. 14 – 18. www.doi.org/10.1134/S0020168519010138.

Shishulin A.V., Fedoseev V.B. Features of the influence of the initial composition of organic stratifying mixtures in microsized pores on the mutual solubility of components. Tech. phys. lett. 2020. Vol. 46, No. 9, pp. 938 – 941. www.doi.org/10.1134/S1063785020090291.

Potapov A.A. On the issues of fractal radio electronics: Processing of multidimensional signals, radiolocation, nanotechnology, radio engineering elements and sensors. Eurasian phys. tech. j. 2018, Vol. 15, No. 2, pp. 5 – 15.

Hourlier D., Perrot P. Au-Si and Au-Ge phase diagrams for nanosystems. Mater. sci. forum. 2010, Vol. 653, pp. 77 – 85. www.doi.org/10.4028/www.scientific.net/MSF.653.77.

Alymov M.I., Shorshorov N.Kh. Effect of size factors on the melting point and surface tension of ultrafine particles. Metally. 1999, Vol. 2, pp. 29 – 31 [in Russian].

Magomedov M.N. On the minimum size of a nanoparticle when the difference between solid and liquid states disappears. Herald of the Bauman Moscow state technical university. 2012, Vol. 44, pp. 36 – 49 [in Russian].

Magnin Y., Zappelli A., Amara H., et al. Size-dependent phase diagrams of nickel-carbon nanoparticles. Phys. rev. lett. 2015, Vol. 115, No. 205502. www.doi.org/10.1103/PhysRevLett.115.205502.

Shishulin A.V., Potapov A.A., Shishulina A.V. On the transition between ferromagnetic and paramagnetic states in mesoporous materials with fractal morphology. Eurasian phys. tech. j. 2021, Vol. 18, No.2, pp. 6 – 11.

Fedoseev V.B., Shishulin A.V. On the size distribution of dispersed fractal particles. Tech. phys. 2021, Vol. 66, No. 1, pp. 34 – 40. https://doi.org/10.1134/S1063784221010072.

"

Загрузки

Как цитировать

Шишулин A., Потапов A., & Шишулина A. (2021). Начальный состав как дополнительный параметр, определяющий поведение плавления наночастиц (на примере системы Six – Ge1- x). Eurasian Physical Technical Journal, 18(4(38), 5–13. https://doi.org/10.31489/2021No4/5-13

Выпуск

Раздел

Материаловедение

Наиболее читаемые статьи этого автора (авторов)

Loading...