О ПЕРЕХОДЕ МЕЖДУ ФЕРРОМАГНИТНЫМИ И ПАРАМАГНИТНЫМИ СОСТОЯНИЯМИ В МЕЗОПОРИСТЫХ МАТЕРИАЛАХ С ФРАКТАЛЬНОЙ МОРФОЛОГИЕЙ
DOI:
https://doi.org/10.31489/2021No2/6-11Ключевые слова:
мезопористые материалы, фазовый переход второго рода, ферромагнетизм, температура Кюри, сплоченная энергияАннотация
В настоящей работе продемонстрировано влияние присутствия пор и их морфологии на температуры магнитных превращений в мезопористых ферромагнитных материалах. Из результатов модельных расчетов следует возможность получения макроскопических мезопористых структур с заметно сниженными значениями температуры Кюри, величина которой дополнительно уменьшается при «усложении» формы пор. Результаты получены на основе экспериментально верифицированной корреляции между температурой Кюри материала и его энергией когезии и проиллюстрированы на примере чистых мезопористых железа, никеля и кобальта. Описание морфологии пор произведено с использованием методов фрактальной геометрии. В заключительной части обсуждаются различные варианты практического применения пористых материалов с управляемым значением температуры Кюри.
Библиографические ссылки
"1 Binns C. (ed.) Nanomagnetism: fundamentals and applications. Newnes, Front. nanosc. 2014, 328 p.
Tannous C., Comstock R.L. Magnetic information-storage materials. In: Springer handbook of electronic and photonic materials. Cham, Springer. 2017, pp. 1185 – 1220. https://doi.org/10.1134/S1063776117010046.
Wang S.X., Li G.. Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE trans. magn. 2008, Vol. 44, pp. 1687 – 1702. https://doi.org/10.1109/TMAG.2008.920962.
Lashkarev G.V., Radchenko M.V., Bugaiova M.E., et.al. Ferromagnetic nanocomposites as spintronic mater-ials with controlled magnetic structure. Low temp. phys. 2013, Vol. 39, No. 1, pp. 66–75. https://doi.org/10.1063/1.4776232.
Spirou S.V., Basini M., Lascialfari A., et al. Magnetic hyperthermia and radiationtherapy: radiobiological principles and current practice. Nanomaterials. 2018, Vol. 8, No. 401. https://doi.org/10.3390/nano8060401.
Mihaela O. Study about the possibility to control the superparamagnetism-superferromagnetism transition in magnetic nanoparticle systems. J. magn. magn. mater. 2013, Vol. 343, pp. 189 – 193. https://doi.org/10.1016/j.jmmm.2013.05.011.
Marrows C.H., Perez M., Hickey B.J. Finite size scaling effects in giant magnetoresistance multilayers. J. phys.: condens. matter. 2006, Vol. 18, No. 243. https://doi.org/10.1088/0953-8984/18/1/017.
Lobov I.D., Kirillova M.M., Romashev L.N., et al. Magnetorefractive effect and giant magnetoresistance in Fe(tx)/Cr superlattices. Phys. solid state. 2009, Vol. 51, No. 12, pp. 2337 – 2341. https://doi.org/10.1134/S1063783409120099.
Temiryazev A.G., Temiryazeva M.P., Zdoroveyshchev A.V., et al. Formation of a domain structure in multilayer CoPt films by magnetic probe of an atomic force microscope. Phys. solid state. 2018, Vol. 60,
No. 11, pp. 2200 – 2206. https://doi.org/10.1134/S1063783418110318.
Filev V.G., Raskov R.C. Magnetic catalysis of chiral symmetry breaking: a holographic perspective. Adv. high energy phys. 2010, No. 473206. https://doi.org/10.1155/2010/473206.
Fisher M.E, Barber M.N. Scaling theory for finite-size effects in the critical region. Phys. rev. lett. 1972,
Vol. 28, pp. 1516 – 1519. https://doi.org/10.1103/PhysRevLett.28.1516.
Sun C.Q., Zhong W.H., Li S., et al. Coordination imperfection suppressed phase stability of ferromagnetic, ferroelectric, and superconductive nanosolids. J. phys.chem. B. 2004, Vol. 108, pp. 1080 – 1084. https://doi.org/10.1021/jp0372946.
Yang C.C., Jiang Q. Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals. Acta mater. 2005, Vol. 53, pp. 3305 – 3311. https://doi.org/10.1016/j.actamat.2005.03.039.
Ling-fei C., Dan X., Ming-xing G., et al. Size and shape effects on Curie temperature of ferromagnetic nanoparticles. Trans. nonferrous met. soc. China. 2007. Vol. 17, pp. 1451 – 1455. https://doi.org/10.1016/S1003-6326(07)60293-3.
Delavari H., Hosseini H.M., Simchi A. A simple model for the size- and shape-dependent Curie temperature of freestanding Ni and Fe nanoparticles based on the average coordination number and atomic cohesive energy. J. chem. phys. 2011, Vol. 383, pp. 1 – 5. https://doi.org/10.1016/j.chemphys.2011.03.010.
He X., Zhong W., Au C.-T., et al. Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method. Nanoscale res. lett. 2013, Vol. 8, No. 446. https://doi.org/10.1186/1556-276X-8-446.
Nikiforov V.N., Koksharov Yu.A., Polyakov S.N., et al. Magnetism and Verwey transition in magnetite nanoparticles in thin polymer film. J. alloys compd. 2013, Vol. 569, pp. 58 – 61. https://doi.org/10.1016/j.jallcom.2013.02.059.
Shuai Z., Li H. Size-dependent piezoelectric coefficient and Curie temperature of nanoparticles. Nanomaterials and energy. 2017, Vol. 6, No. 2, pp. 53 – 58. https://doi.org/10.1680/jnaen.16.00014.
Nikiforov V.N., Ignatenko A.N., Irkhin V.Yu. Size and surface effects on the magnetism of magnetite and maghemite nanoparticles. J. exp. theor. phys. 2017, Vol. 124, No. 2, pp. 304 – 310. https://doi.org/10.1134/S1063776117010046.
Essajai R., Benhouria Y., Rachadi A., et al. Shape-dependent structural and magnetic properties of Fe nanoparticles studied through simulation methods. RSC adv. 2019, Vol. 9, pp. 22057 – 22063. https://doi.org/10.1039/C9RA03047F.
Stolyar S.V., Komogortsev S.V., Chekanova L.A., et al. Magnetite nanocrystals with a high magnetic anisotropy constant due to the particle shape. Tech. phys. lett. 2019, Vol. 45, No. 9, pp. 878 – 881. https://doi.org/10.1134/S1063785019090116.
Gaev D.S., Rekhviashvili S.Sh. Kinetics of crack formation in porous silicon. Semiconductors. 2012, Vol. 46, No. 2, pp. 137 – 140. https://doi.org/10.1134/S1063782612020108.
Błaszczyński T., Ślosarczyk A., Morawski M. Synthesis of silica aerogel by supercritical drying method. Procedia eng. 2013, Vol. 57, pp. 200 – 206. https://doi.org/10.1016/j.proeng.2013.04.028.
Chae H.K., Siberio-Pérez D.Y., Kim J., et al. A route to high surface area,porosity and incusion of large molecules in crystals. Nature. 2004, Vol. 427, pp. 523 – 527. https://doi.org/10.1038/nature02311.
Chuvil’deev V.N., Nokhrin A.V., Kopylov V.I., et al. Spark plasma sintering for high-speed diffusion bonding of the ultrafine-grained near-α Ti–5Al–2V alloy with high strength and corrosion resistance for nuclear engineering. J. mater. sci. 2019, Vol. 54, pp. 14926 – 14949. https://doi.org/10.1007/s10853-019-03926-6.
Ganeriwala R., Zohdi T.I. Multiphysics modeling and simulation of selective laser sintering manufacturing processes. Procedia CIRP. 2014, Vol. 14, pp. 299 – 304. https://doi.org/10.1016/j.procir.2014.03.015.
Berner M.K., Zarko V.E., Talawar M.B. Nanoparticles of energetic materials: synthesis and properties (review). Combust., explos., shock waves. 2013, Vol. 49, pp. 625 – 647. https://doi.org/10.1134/S0010508213060014.
Hakamada M., Mabuchi M. Nanoporous Ni fabricated by dealloying of rolled Ni-Mn sheet. Procedia eng. 2014, Vol. 81, pp. 2159 – 2164. https://doi.org/10.1016/j.proeng.2014.10.302.
Zhanabaev Z.Zh., Ibraimov M.K., Sagidolda E. Electrical properties of fractal nanofilms of porous silicon. Eurasian phys. tech. j. 2013, Vol. 10, No.1, pp. 3 – 6.
Shishulin A.V., Fedoseev V.B. On some peculiarities of stratification of liquid solutions within pores of fractal shape. J. mol. liq. 2019, Vol. 278, pp. 363 – 367. https://doi.org/10.1016/j.molliq.2019.01.050.
Shishulin A.V., Fedoseev V.B. Peculiarities of phase transformations of polymer solutions in deformable porous matrices. Tech. phys. lett. 2019, Vol. 45, No. 7, pp. 697 – 699. https://doi.org/10.1134/S1063785019070289.
Shishulin A.V., Fedoseev V.B. Stratifying polymer solutions in microsized pores: phase transitions induced by deformation of a porous material. Tech. phys. 2020, Vol. 65, No. 3, pp. 340 – 346. https://doi.org/10.1134/S1063784220030238.
Magomedov M.N. Size dependence of the shape of a silicon crystal during melting. Tech. phys. lett. 2016,
Vol. 42, No. 7, pp. 761 – 764. https://doi.org/10.1134/S1063785016070245.
Guisbiers G., Buchaillot L. Universal size/shape-dependent law for characteristic temperatures. Phys. lett. A. 2009, Vol. 374, pp. 305 – 308. https://doi.org/10.1016/j.physleta.2009.10.054.
Guisbiers G. Size-dependent materials properties toward a universal equation. Nanoscale res. lett. 2010,
Vol. 5, No. 1132. https://doi.org/10.1007/s11671-010-9614-1.
Guisbiers G., Abudukelimu G. Influence of nanomorphology of the melting and catalytic properties of convex polyhedral nanoparticles. J. nanopart. res. 2013, Vol. 15, No. 1431. https://doi.org/10.1007/s11051-013-1431-x.
Aqra F., Ayyad A. Surface free energy of alkali and transition metal nanoparticles. Appl. surf. sci. 2014,
Vol. 324, pp. 308 – 313. https://doi.org/10.1016/j.apsusc.2014.07.004.
Potapov A.A. On the issues of fractal radio electronics: Processing of multidimensional signals, radiolocation, nanotechnology, radio engineering elements and sensors. Eurasian phys. tech. j. 2018, Vol. 15, No. 2, pp. 5 – 15.
Fedoseev V.B., Potapov A.A., Shishulin A.V., Fedoseeva E.N. Size and shape effect on the phase transitions in a small system with fractal interphase boundaries. Eurasian phys. tech. j. 2017, Vol. 14, No.1, pp. 18 – 24.
Shishulin A.V., Fedoseev V.B., Shishulina A.V. Melting behavior of fractal-shaped nanoparticles (the example of Si-Ge system). Tech. phys. 2019, Vol. 64, No. 9, pp. 1343 – 1349. https://doi.org/10.1134/S1063784219090172.
Shishulin A.V., Fedoseev V.B. On mutual solubility in submicron-sized particles of the Pt-Au catalytic system. Kinet. catal. 2019, Vol. 60, No. 3, pp. 315-319. https://doi.org/10.1134/S0023158419030121.
Shishulin A.V., Potapov A.A., Fedoseev V.B. Phase equilibria in fractal core-shell nanoparticles of Pb5(VO4)3Cl – Pb5(PO4)3Cl system: the influence of size and shape. In: Z. Hu,
S. Petoukhov, M. He (eds.). Advances in artificial systems for medicine and education II. Cham., Springer. 2020,
pp. 405 – 413. https://doi.org/10.1007/978-3-030-12082-5_37.
Fedoseev V.B., Shishulin A.V. On the size distribution of dispersed fractal particles. Tech. phys. 2021, Vol. 66, No. 1, pp. 34 – 40. https://doi.org/10.1134/S1063784221010072.
Attarian Shandiz M. Effective coordination number model for the size dependency of physical properties of nanocrystals. J. phys.: condens. matter. 2008, Vol. 20, No. 325237. https://doi.org/10.1088/0953-8984/20/32/325237.
Len’shina N.A., Arsenyev M.V., Shurygina M.P., et al. Photoreduction of o-benzoquinone moiety in mono- and poly(quinone methacrylate) and on the surface of polymer matrix pores. High energy chem. 2017, Vol. 51, pp. 209 – 214. https://doi.org/10.1134/S0018143917030080.
Bronstein L.M., Sidorov S.N., Valetskii P.M. Nanostructured polymeric systems as nanoreactors for nanoparticle formation. Russ. chem. rev. 2004, Vol. 73, No. 5, pp. 501 – 515. https://doi.org/10.1070/RC2004v073 n05ABEH000782.
Villanueva A., De la Presa P., Alonso J.M., et al. Hyperthermia hela cell treatment with silica-coated manganese oxide nanoparticles. J. phys. chem. C. 2010, Vol. 114, pp. 1976–1981. https://doi.org/10.1021/jp907046f.
"