Determination of the elemental composition and changes in thermal and electrical conductivity of “Hanford” and low-ash medium-grained graphite’s grade graphites depending on the fast neutrons fluence
DOI:
https://doi.org/10.31489/2024No3/37-44Keywords:
thermal conductivity, electrical conductivity, low-ash medium-grained graphite’s, “Hanford” grade graphite, fast neutrons, fluence, doseAbstract
Studying the properties of graphite recovered from operating nuclear reactors is vital for predicting the properties and integrity of graphite as part of assessing the continued operation and life extension of nuclear reactors. The purpose of the study is to determine the electrical conductivity and thermal conductivity of low-ash medium-grained graphite’s grade graphite in the thermal column masonry of the VVR-SM research reactor in the measurement temperature range corresponding to the conditions of normal operation of the reactor to determine the service life. In this work, the change in thermal conductivity and electrical conductivity of GMZ graphite was studied, as well as for comparison of Hanford grade graphite depending on the fluence of fast neutrons and the measurement temperature. The dependence of electrical conductivity and thermal conductivity on dose and temperature has been established. It has been shown that the greater the neutron fluence, the more both the thermal conductivity and electrical conductivity of the material decreases. The service life of the thermal column has been determined.
References
Zhao Lu, Tang Jiang, Zhou Min, Shen Ke. (2022) A review of the coefficient of thermal expansion and thermal conductivity of graphite. New Carbon Mater, 37(3), 544–555. DOI: 10.1016/S1872-5805(22)60603-6.
Virgiliev Yu.S., Kalyagina I.P., Zemlyanikin V.F., Klimenko A.A. (2007) Graphite for the high-temperature gas-cooled reactor GT-MGR. Atomic Energy, 103 (4), 235 – 237. https://elib.biblioatom.ru/text/atomnaya-energiya_t103-4_2007/p235/ [in Russian].
Zhmurikov E.I., Romanenko A.I., Bulusheva L.G., Anikeeva O.B., Lavskaya Yu.V., Okotrub A.V., Abrosimov O.G., Tsybulya S.V., Logachev P.V., Tecchiol L. (2007) Studies of the electronic structure and properties of composites based on the 13C carbon isotope. Surface. X-ray, synchrotron and neutron studies, 11, 29 – 35. https://elibrary.ru/item.asp?id=9554577&ysclid=lxvqu4h420350625560 [in Russian].
Zhmurikov E.I., Bolkhovityanov D.Yu., Blinov M.F., Ishchenko A.V., Kot N.Kh., Titov A.T., Tsybulya S.V., Tecchio L. (2010) On the issue of the durability of reactor graphites. Surface. X-ray, synchrotron and neutron studies, 5, 89 - 99. https://elibrary.ru/item.asp?id=15108600 [in Russian].
Zhang H., Lee G., Fonseca A.F., Bolders T.L., Cho K. (2010) Isotope effect on the thermal conductivity of graphene. Journal of Nanomaterials, Article ID 537657, 1 - 6. DOI: 10.48550/arXiv.1007.1496.
Belan E.P., Pokrovskiy A.S., Kharkov D.V. (2017) The effect of thermal annealing on thermal conductivity of graphite GR-280 irradiated up to high neutron fluence. Physical and mathematical sciences, I (1), 82 - 91. DOI:10.21685/2072-3040-2017-1-8. [in Russian].
Stankus S.V., Savchenko I.V., Agazhanov A.Sh., Yatsuk, O.S.; Zhmurikov, E.I. (2013) Thermophysical properties of MPG-6 graphite. Thermophysics of High Temperatures, 51(2), 205–209. https://www.mathnet.ru/php/archive.phtml?wshow =paper&jrnid=tvt&paperid=75&option_lang=eng [in Russian].
Vlasova K.P. (1964). Graphite as a high-temperature material. Collection of articles. 420. http://elcat. lib.misis.ru/vmsua5379ghkip/index.php?url=/notices/index/IdNotice:987677977/ Source:default# [in Russian].
Tadashi M., Masaaki H. (1992) Neutron irradiation effect on the thermal conductivity and dimensional change of graphite materials. Journal of Nuclear Materials, 195(1–2), 44-50. DOI: 10.1016/0022-3115(92) 90362-O.
Yumeng Zh., Yuhao J., Shasha L., Jie Gao., Zhou Zhou., Toyohiko Yano., Zhengcao Li. (2022) The Wigner energy and defects evolution of graphite in neutron-irradiation and annealing. Radiation Physics and Chemistry, 201, 110401. DOI: 10.1016/j.radphyschem.2022.110401.
Pavlov T.R., Lestak M., Wenman M.R., Vlahovic L., Robba D., Cambriani A., Staicu D., Dahms E., Ernstberger M., Brown M., Bradford M.R., Konings R.J.M., Grimes R.W. (2020) Examining the thermal properties of unirradiated nuclear grade graphite between 750 and 2500 K. Journal of Nuclear Materials, 538, 152176. DOI:10.1016/j.jnucmat.2020.152176.
Matthew S.L. Jordan., Paul R., Karen E. V., Tjark O. van Staveren., Matthew Brown., Bruce Davies., Nassia Tzelepi., Martin Metcalfe. (2018) Determining the electrical and thermal resistivities of radiolytically-oxidized nuclear graphite by small sample characterization. Journal of Nuclear Materials, 507, 68 - 77. DOI:10.1016/j.jnucmat.2018.04.022.
Denisova E.I., Shaq A.V. (2005) Measuring thermal conductivity using the IT-λ-400 meter. Ekaterinburg, 35. https://study.urfu.ru/Aid/Publication/279/1/Denisova_Shak2.pdf [in Russian].
Abdukadyrova I.Kh., Alikulov Sh.A., Akhmedjanov F.R., Baytelesov S.A., Boltabaev A.F., Salikhbaev U.S. (2014) High-Temperature Thermal Conductivity of SAV-1 the Aluminum Alloys. Atomic Energy, 116 (2), 100 - 104. https://link.springer.com/content/pdf/10.1007/ s10512-014-9825-0.pdf
Instruction manual model 3207 digital micro-ohm meter. USA (2011), 35 https://www.instrumentation2000. com/pub/media/pdf/ballantine-3207-manual.pdf
Kuntse H.I. (1989) Methods of physical measurements. Moscow, 216. https://lib-bkm.ru/12583 [in Russian].
Anne A.C., Yutai K., Snead M.A., Takizawa K. (2016) Property changes of G347A graphite due to neutron irradiation. Carbon, 109, 860 - 873. DOI:10.1016/j.carbon.2016.08.042.
Downloads
Received
Revised
Accepted
Published online
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.