Исследование некоторых физических и структурных свойств расплавов ультразвуком
DOI:
https://doi.org/10.31489/2025N1/93-102Keywords:
viscous, liquid metals, ultrasound propagation speed, structural changes, meltAbstract
A modern effective way of influencing molten metal is ultrasonic treatment - a type of dynamic influence on liquid and crystallizing metal. At certain parameters of the intensity of ultrasonic treatment, which causes acoustic cavitation of the liquid metal, the refining process actively occurs. Moreover, powerful ultrasound allows, during the modification process, to introduce various composite elements and refractory alloys into the metal, acting directly on the crystal lattice. The calculations carried out on the properties of elastic waves make it possible to identify such features in the behavior of the sound absorption coefficient polytherms, which with sufficient certainty indicate the absence or presence of structural changes when the melt is heated, and establish the possibility of implementing various mechanisms of structural changes in the same melt in different temperature ranges. The conducted studies of elastic wave energy absorption as well as ultrasound velocity allow us to identify such features in the behavior of sound absorption coefficient polyterms that indicate the absence or presence of structural changes during melt heating. The comparative analyses make it possible to conclude that there is not a single mechanism of structural changes The possibility of implementing various mechanisms of structural changes in the same melt in different temperature ranges is shown.
References
Chinnam R.K., Fauteux C., Neuenschwander J., Janczak-Rusch J. (2011) Evolution of the microstructure of Sn–Ag–Cu solder joints exposed to ultrasonic waves during solidification. Acta Materialia, 59, 1474-1481. https://doi.org/10.1016/j.actamat.2010.11.011
Kazhikenova S.Sh., Shaltakov S.N., Nussupbekov В. (2021) Difference melt model. Archives of Control Sciences, 31 (LXVII), 607–627. https://doi.org/10.24425/acs.2021.138694
Kazhikenova S.Sh. (2021) The unique solvability of stationary and non-stationary incompressible melt models in the case of their linearization. Archives of Control Sciences, 31(LXVII), 307-302. https://doi.org/10.24425/acs.2021. 137420
Hackett L., Miller M., Weatherred S. (2023) Non-reciprocal acoustoelectric microwave amplifiers with net gain and low noise in continuous operation. Nat Electron., 6, 76–85. https://doi.org/10.1038/s41928-022-00908-6
White D.L. (1962) Amplification of ultrasonic waves in piezoelectric semiconductors. J. Appl. Phys., 33, 2547–2554. https://doi.org/10.1063/1.1729015
Eskin D.G., Tzanakis I., Wang F., Lebon G.S.B., Subroto T., Pericleous K. (2019) Fundamental studies of ultrasonic melt processing. Ultrasonics Sonochemistry, 52, 455-467. https://doi.org/10.1016/j.ultsonch.2018.12.028
García-Colín L.S., De La Selva S.M.T. (1973) The Stokes-Kirchhoff relation in chemically reacting fluids. Chemical Physics Letters, 23 (4), 611-613. https://doi.org/10.1016/0009-2614(73)89041-4
Shekaari H., Golmohammadi B. (2021) Ultrasound-assisted of alkali chloride separation using bulk ionic liquid membrane. Ultrasonics Sonochemistry, 74, 105549. https://doi.org/10.1016/j.ultsonch.2021.105549
Liu Y., Yu W., Liu Y. (2019) Effect of ultrasound on dissolution of Al in Sn. Ultrasonics Sonochemistry, 50, 67-73. https://doi.org/10.1016/j.ultsonch.2018.08.029
Zheng Y., Tan X.Yi, Xiaojuan W., Cheng X., Liu Zh., Yan Q. (2020) Thermal stability and mechanical response of - based materials for thermoelectric applications. ACS Applied energy materials, 3 (3), 2078-2089. https://doi.org/10.1021/acsaem.9b02093
Chiba A., Ohmasa Y., Yao M.. (2013) Vibrational, single-particle-like, and diffusive dynamics in liquid Se, Te, and . J. Chem. Phys., 119, 9047 – 9062. https://doi.org/10.1063/1.1615234
Inui M., Kajihara Y., Tsuchiya Y. (2020) Peculiar temperature dependence of dynamical sound speed in liquid by inelastic x-ray scattering. Journal of Physics Condensed Matter., 21, 214003. https://doi.org/10.1088/1361-648X/ab6d8e
Pak Yu., Pak D., Kazhikenova S.Sh., Shaikhova G.S., Abayeva N.F., Imanbayeva S.B. RK Patent No 35901(14 October 2022)
Bitong Wang, Douglas H. Kelley. (2021) Microscale mechanisms of ultrasound velocity measurement in metal melts. Flow Measurement and Instrumentation, 81, 102010. https://doi.org/10.1016/j.flowmeasinst.2021.102010
Cramer A., Zhang C., Eckert S. (2024) Local flow structures in liquid metals measured by ultrasonic Doppler velocimetry. Flow Measurement and Instrumentation, 15, 145-153. https://doi.org/10.1016/j.flowmeasinst.2003.12.006
Syla N., Ahmeti H., Aliaj F., Dalipi B. (2024) The determination of some sizes and physical characteristics of metals by ultrasound. International Journal of Computational and Experimental Science and Engineering, 10 https://doi.org/10.22399/ijcesen.315
Kazhikenova S.Sh., Shaltakov S.N., Belomestny D., Shaihova G.S. (2020) Finite difference method implementation for Numerical integration hydrodynamic equations melts. Eurasian Physical Technical Journal, 17, 1(33). https://doi.org/10.31489/2020NO1/145-150
Greenberg Y., Yahel E., Ganor M., Hevronib R., Koroverb I., Dariela M., Makov G. (2008) High precision measurements of the temperature dependence of the sound velocity in selected liquid metals. Journal of Non-Crystalline 354(34), 4094-4100. https://doi.org/10.1016/j.jnoncryso1.2008.05.038
Gauthier M., Lheureux D., Decremps F., Polian A. (2003) High-pressure ultrasonic setup using the Paris–Edinburgh press: Elastic properties of single crystalline germanium up to 6 GPa. The Review of scientific instruments, 74(8), 3712-3716. https://doi.org/10.1063/1.1593791
Kozhevnikov V., Payne W.B., Olson J., Allen A., Taylor P.C. (2004) Sound velocity in liquid and glassy selenium. Journal of Non-Crystalline Solids, 353(32), 3254-3259. https://doi.org/10.1016/j.jnoncrysol.2007.05.062
Knyazev G.A., Voloshinov V.B. (2008) Diffraction of IR radiation by ultrasound in tellurium single crystals. Bulletin of the Russian Academy of Sciences Physics, 72(12), 1643-1647. https://doi.org/10.3103/S1062873808120149
Kuleyev I.G., Kuleyev I.I., Arapova Yu I. (2007) Transverse ultrasound absorption in cubic crystals with positive and negative anisotropies of second-order elasticity moduli. Journal of Physics, 19(40), 406216. https://doi.org/10.1088/0953-8984/19/40/406216
Downloads
Published online
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.