Several notes on the lattice thermal conductivity of fractal-shaped nanoparticles

Several notes on the lattice thermal conductivity of fractal-shaped nanoparticles

Authors

DOI:

https://doi.org/10.31489/2022No3/10-17

Keywords:

thermoelectric materials, thermal conductivity, nanoparticles, phonons, fractal dimension

Abstract

Using the additive technologies in the production of nanoparticle-fabricated three-dimensional materials has become one of the most promising ways of obtaining effective and low-cost thermoelectric energy converters. Nanostructuring provides a route to modifying selectively the transport properties which determine the materials thermoelectric efficiency. In this paper, we have shown one more effect which consists in a significant dependence of the contribution of lattice vibrations to the thermal conductivity coefficient of a nanoparticle (its reducing is required in practice) on its morphology for nanoparticles of a pure substance. The particle morphology has been specified by the values of its effective diameter, fractal dimension and surface roughness.Using nanoparticles of pure bismuth at low temperatures as an example, we have demonstrated a notable decrease in the lattice thermal conductivity in “complicating” the particle morphology. In the final section, we have presented methods of calculating characteristics of nanoparticle ensembles, the methodology of measuring the fractal dimension experimentally also being discussed.

Author's detail

A.V. Shishulin

Master (Sci.), Junior Researcher, Pleiades Publ., Ltd, Moscow, Russia. Scopus AuthorID: 57191571862; ORCID: 0000-0003-2370-5313

A. A. Potapov

Doctor of phys.-math. sciences, Professor, Chief researcher, V.A. Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of sciences, Moscow, Russia; IREE joint laboratory of fractal method & signal processing, Jinan University, Guangzhou, China. Scopus AuthorID: 56375460400, 56375460400; ORCID: 0000-0001-9864-3546

A.V. Shishulina

PhD, Associate Professor, R.E. Alekseev Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia; N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia. Scopus AuthorID: 6602952373

References

Rowe D.M. (ed.) Thermoelectric handbook macro to nano. Boca Raton, CRC Press. 2006. 1008 p.

Tambasov I.A., Voronin A.S., Evsevskaya N.P., et al. Thermoelectric properties of low-cost cost

transparent single wall carbon nanotube thin films obtained by vacuum filtration. Phys E. 2019. Vol. 114. 113619.

https://doi.org/10.1016/j.physe.2019.113619.

Hu J.-Z., Liu B., Zhou J., et al. Enhanced thermoelectric cooling performance with

graded thermoelectric materials. Jpn. j. appl. phys. 2018. Vol. 57, pp. 71801 – 71806.

www.doi.org/10.7567/JJAP.57.071801.

Li Z., Miao N., Zhou J., et al. High thermoelectric performance of few-quintuple Sb2Te3 nanofilms. Nano

energy. 2018. Vol. 43, pp. 285 – 290. www.doi.org/10.1016/j.nanoen.2017.11.043.

Erofeeva I.V., Dorokhin M.V., Lesnikov V.P., et al. Thermoelectric effects in nanoscale layers of manganese

silicide. Semiconductors. 2017. Vol. 51, No. 11, pp. 1403 – 1408. www.doi.org/10.1134/S1063782617110112.

Caballero-Calero O., Martín-González M. Thermoelectric nanowires: A brief prospective.Scripta mater. 2016.

Vol. 111, pp. 54 – 57. www.doi.org/10.1016/j.scriptamat.2015.04.020.

Dorokhin M.V., Erofeeva I.V., Kuznetsov Yu.M., et al. Investigation of the initial stages of spark-plasma

siltering of Si-Ge-based thermoelectric materials. Nanosyst.: phys., chem., math. 2018. Vol. 9, No. 5, pp. 622 – 630.

www.doi.org/10.17586/2220-8054-2018-9-5-622-630.

Kuznetsov Yu.M., Bastrakova M., Dorokhin M.V., et al. Molecular dynamics studies on spark-plasma

sintering of Si-Ge-based thermoelectric materials. AIP adv. 2020. Vol.10, No.6, 065219.

https://doi.org/10.1063/5.0011740.

Bulat L.P., Drabkin I.A., Karatayev V.V., et al. Effect of boundary scattering on the thermal conductivity of a

nanosctructured semiconductor material based on the BixSb2-xTe3 solid solution. Phys. solid state. 2010. Vol. 52, No. 9,

pp. 1836 – 1841. https://doi.org/10.1134/S1063783410090088.

Shishulin A.V., Fedoseev V.B., Shishulina A.V. Phonon thermal conductivity and phase equilibria of fractal

Bi-Sb nanoparticles. Tech. phys. 2019. Vol. 64, No. 4, pp. 512 – 517. www.doi.org/10.1134/S1063784219040200.

Shishulin A.V., Potapov A.A., Shishulina A.V. Fractal nanoparticles of phase-separating solid solutions:

nanoscale effects on phase equilibria, thermal conductivity, thermoelectric performance. 14th Chaotic modeling and

simulation, Springer proceedings in complexity. www.doi.org/10.1007/978-3-030-96964-6_30.

Fedoseev V.B., Shishulin A.V. Shape effect in layering of solid solutions in small volume: bismuth-antimony

alloy. Phys. solid state. 2018. Vol. 60, No. 7, pp. 1398 – 1404. www.doi.org/10.1134/S1063783418070120.

Lee S., Esfarjani K., Mendoza J., et al. Lattice thermal conductivity of Bi, Sb, and Bi-Sb alloy from first

principles. Phys. rev. B. 2014. Vol. 89, pp. 85206 – 85215. www.doi.org/10.1103/PhysRevB.89.085206.

Shishulin A.V., Fedoseev V.B.Stratifying polymer solutions in microsized pores: phase transitions induced by

deformation of a porous material. Tech. phys. 2020. Vol.65, No.3, pp. 340 – 346.

www.doi.org/10.1134/S1063784220030238.

Shishulin A.V., Fedoseev V.B. Thermal stability and phase composition of stratifying polymer solutions in

small-volume droplets. J. eng. phys. thermophys. 2020. Vol. 93, No. 4, pp. 802 – 809. www.doi.org/10.1007/s10891-

-02182-9.

Shishulin A.V., Fedoseev V.B.Features of the influence of the initial composition of organic stratifying

mixtures in microsized pores on the mutual solubility of components. Tech. phys. lett. 2020.

Vol. 46, No. 9, pp. 938 – 941. www.doi.org/10.1134/S1063785020090291.

Geoffrion L.-D., Guisbiers G. Chemical ordering in Bi1-xSbx nanostructures: alloy, janus or core-shell. J. phys.

chem. C. 2020. Vol. 124, No.25, pp. 14061 – 14068. www.doi.org/10.1021/acs.jpcc.0c04356.

Guisbiers G. Advances in thermodynamic modeling of nanoparticles. Adv. phys. X. 2019. Vol. 4, No. 1,

www.doi.org/10.1080/23746149.2019.1668299

Hill T.L. Thermodynamics of small systems. Parts 1 & 2. Mineola, New York, Dover Publications.

416 p.

Qi W.H., Wang M.P. Size and shape-dependent melting temperature of metallic nanoparticles. Mater. chem.

phys. 2004. Vol. 88, pp. 280 – 284. www.doi.org/10.1016/j.matchemphys.2004.04.026.

Rose J.H., Ferrante J., Smith J.R. Universal features of bonding in metals. Phys. rev. B. 1983.

Vol. 28, No. 4, pp. 1835 – 1845. https://doi.org/10.1103/PhysRevB.28.1835.

Guinea F., Rose J.H., Smith J.R. et al. Scaling relations in the equation of state, thermal expansion and

melting of metals. Appl. phys. lett. 1984. Vol. 44, pp. 53 – 55. https://doi.org/10.1063/1.94549.

Fedoseev V.B., Potapov A.A., Shishulin A.V., Fedoseeva E.N. Size and shape effect on the phase transitions in

a small system with fractal interphase boundaries. Eurasian phys. tech. j. 2017. Vol. 14, No.1, pp. 18 – 24.

Shishulin A.V., Fedoseev V.B. Peculiarities of phase transformations of polymer solutions in deformable

porous matrices. Tech. phys. lett. 2019. Vol. 45, No. 7, pp. 697 – 699. https://doi.org/10.1134/S1063785019070289.

Potapov A.A. On fractal dimension spectrum of new lightning discharge types in ionosphere: elves, jets and

sprites. Eurasian phys. tech. j. 2016. Vol. 13, No. 2, pp. 5 – 11.

Shishulin A.V., Fedoseev V.B. On some peculiarities of stratification of liquid solutions within pores of fractal

shape. J. mol. liq. 2019. Vol. 278, pp. 363 – 367. www.doi.org/10.1016/j.molliq.2019.01.050.

Shishulin A.V., Fedoseev V.B., Shishulina A.V. Melting behavior of fractal-shaped nanoparticles (the example

of Si-Ge system). Tech. phys. 2019. Vol. 64, No. 9, pp. 1343 – 1349. https://doi.org/10.1134/S1063784219090172.

Potapov A.A. On the issues of fractal radio electronics: Processing of multidimensional signals, radiolocation,

nanotechnology, radio engineering elements and sensors. Eurasian phys. tech. j. 2018. Vol. 15, No. 2, pp. 5 – 15.

Vopson M.M., Rogers N., Hepburn I. The generalized Lindemann melting coefficient. Solid state commun.

Vol. 218. 113977. www.doi.org/10.1016/j.ssc.2020.113977.

Post E.J. On the characteristic temperatures of single crystals and the dispersion of “Debye heat waves”. Can.

j. phys. 1953. Vol. 31, No. 1, pp. 112 – 119. https://doi.org/10.1139/p53-010.

Regal A.R., Glazov V.M. Entropy of melting of semiconductors. Semiconductors. 1995. Vol. 29, No. 5,

pp. 405 – 417.

Magomedov M.N. On the statistical thermodynamics of a free-standing nanocrystal: silicon. Cryst. rep. 2017.

Vol. 63, No. 3, 480 – 496. https://doi.org/10.1134/S1063774517030142.

Zimann J.M. Electrons and phonons. Oxford, Clarendon Press. 1960. pp. 58, 288, 396, 456.

Soyez G., Eastman J.A., Thompson L.J. et al. Grain-size-dependent thermal conductivity of nanocrystalline

yttria-stabilized zirconia films grown by metal-organic chemical vapor deposition. Appl. phys. lett. 2000. Vol. 77, No.

, pp. 1155 – 1157. https://doi.org/10.1063/1.1289803.

Khvesyuk V.I. Skryabin A.S. Heat conduction in nanostructures. High temp. 2017. Vol. 55, No. 3, pp. 434 –

https://doi.org/10.1134/S0018151X17030129.

Goyal M. Shape, size and phonon scattering effect on the thermal conductivity of nanostructures. Pramana: j.

phys. 2018. Vol. 91, pp.87. www.doi.org/10.1007/s12043-018-1660-8.

Fedoseev V.B. The use of fractal geometry for the thermodynamic description of the free-dimensional crystal

structure elements. Lett. mater. 2012. Vol. 2, pp. 78 – 83.

Shishulin A.V., Fedoseev V.B., Shishulina A.V. Variation of the Curie temperature in porous materials. Tech.

phys. lett. 2020. Vol. 46, No. 7, pp. 680 – 682. https://doi.org/10.1134/S106378502007024X.

Shishulin A.V., Potapov A.A., Shishulina A.V. On the transition between ferromagnetic and paramagnetic

states in mesoporous materials with fractal morphology. Eurasian phys. tech. j. 2021. Vol. 18, No.2, pp. 6 – 11.

https://doi.org/10.31489/2021NO2/6-11.

Fedoseev V.B., Shishulin A.V. On the size distribution of dispersed fractal particles. Tech. phys. 2021. Vol. 66,

No. 1, pp. 34 – 40. www.doi.org/10.1134/S1063784221010072.

Shishulin A.V., Potapov A.A., Shishulina A.V. The initial composition as an additional parameter determining

the melting behavior of nanoparticles (a case study on Six-Ge1-x alloys). Eurasian phys. tech. j. 2021. Vol. 18, No.4,

pp. 5 – 13. https://doi.org/10.31489/2021NO4/5-14.

Potapov A.A., Pakhomov A.A., Potapov A.A. (Jr.), Potapov V.A. Processing by robust fractal-topological

methods of flows of optical texture images on the Martian surface. Eurasian phys. tech. j. 2019. Vol. 16, No.2, pp. 5 – 10. https://doi.org/10.31489/2019NO2/5-10.

Li J., Du Q., Sun C. An improved box-counting method for image fractal dimension estimation Pattern

recognit. 2009. Vol. 42, pp. 2460 – 2469. www.doi.org/10.1016/j.patcog.2009.03.001.

Fedoseeva E.N., Fedoseev V.B. Interaction of chitosan with benzoic acid in solution and films. Polymer sci.

Ser. A. 2011. Vol. 53, No. 11, pp. 1040 – 1046. https://doi.org/10.1134/S0965545X1110004X.

Downloads

How to Cite

Shishulin, A., Potapov, A. A., & Shishulina, A. (2022). Several notes on the lattice thermal conductivity of fractal-shaped nanoparticles. Eurasian Physical Technical Journal, 19(3(41), 10–17. https://doi.org/10.31489/2022No3/10-17

Issue

Section

Materials science
Loading...