EFFECT OF THE CONCENTRATION OF SILVER NANOPARTICLES ON THE PHOTOCATALYTIC ACTIVITY OF TITANIUM DIOXIDE NANORODS

EFFECT OF THE CONCENTRATION OF SILVER NANOPARTICLES ON THE PHOTOCATALYTIC ACTIVITY OF TITANIUM DIOXIDE NANORODS

Authors

DOI:

https://doi.org/10.31489/2023No4/39-45

Keywords:

nanorods, titanium dioxide, silver nanoparticles, Ag, photocatalysis

Abstract

In this paper the results of a study of the effect of the concentration of silver nanoparticles in films of titanium dioxide nanorods on their photocatalytic activity are presented.Titanium dioxide nanorods with a rutile structure was obtained usingthe method of hydrothermal synthesis. Due tochanging with the amount of substance of the transition metal silver salt (AgNO3) and chemical reduction on the surface of the titanium dioxide nanorods, Ag nanoparticles of different concentrations were obtained. The photocatalytic activity of the samples was assessed by the amount of photocurrent obtained from a unit of film surface and photodegradation of methylene blue dye when illuminating the surface with a light source of a Xenon lamp. Surface morphologies and energy dispersive X-ray studies showed that Ag nanoparticles were uniformly distributed and anchored on the titanium dioxide nanorods surface.

References

Ge M., Cao C., Huang J., et al. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A, 2016, Vol. 4., pp. 6772-6801. doi: 10.1039/C5TA09323F

Haider A.J., Jameel Z.N., Al-Hussaini I.M. Review on: titanium dioxide applications, Energy Procedia, 2019, Vol. 157, pp. 17-29. doi: 10.1016/j.egypro.2018.11.159

Allahverdiyev A.M., Abamor E.S., Bagirova M., et al. Antimicrobial effects of TiO2 and Ag2O nanoparticles againstdrug-resistant bacteria and leishmania parasites. Future Microbiology, 2011, Vol.6, pp. 933–940. doi:10.2217/fmb.11.78

Huang Z., Maness P.-C., Blake D. M. et al. Bactericidal mode of titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology A:Chemistry, 2000, Vol.130, pp. 163–170. doi: 10.1016/s1010-6030(99)00205-1

Serikov T.M., Ibrayev N. Kh., Savilov S.V., et al. T. M. Influence of the hydrothermal synthesis conditions on the photocatalytic activity of titanium dioxide nanorods. Russian journal of applied chemistry, 2021, Vol. 94, pp. 438 –445. doi: 10.1134/S1070427221040030

Serikov T.M., Ibrayev N. Kh., Isaykina O.Ya., et al. Nanocrystalline TiO2 films: synthesis, low-temperature luminescent and photovoltaic properties. Journal of Inorganic Chemistry, 2021, Vol. 66, pp. 107-114. doi: 10.1134/S0036023621010071

Fei Y.C., Ye X.F., Kang J.Y. Enhanced photocatalytic performance of TiO2 nanowires by substituting noble metal particles with reduced graphene oxide. Current appliedphysics, 2022, Vol.44, pp.33-39. doi: 10.1016/j.cap.2022.09.008

Mukametkalia T.M., Ilyassov B.R, Aimukhanov A.K., et al. Effect of the TiO2 electron transport layer thickness on charge transfer processes in perovskite solar cells. Physica B: Condensed Matter, 2023, Vol. 659, pp. 414784. doi: 10.1016/j.physb.2023.414784

Serikov T.M., Baltabekov A.S., Aidarova D.D., et al. Effect of anodizing voltage on the photocatalytic activity of films formed by titanium dioxide nanotubes. Eurasian Physical Technical Journal, 2022, Vol.19, pp.28 – 33. doi: 10.31489/2022No4/28-33

Liu Y, Zhou Y, Yang L, et al. Hydrothermal synthesis of 3Durchin-like Ag/TiO2/reduced graphene oxide compositesand its enhanced photocatalytic performance. J Nanopart Res, 2016, Vol.18, pp.283–295. doi: 10.1007/s11051-016-3596-6

Liang Y.T., Vijayan B.K., Gray K.A. et al. Minimizing graphene defects enhances titania nanocomposite-based photoca-talytic reduction of CO2 for improved solar fuel pro-duction. Nano Lett, 2011, Vol.11, pp.2865–2870. doi: 10.1021/nl2012906

Cozzoli P.D., Kornowski A., Weller H. Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods, Journal of the american chemical society, 2003, Vol.47, pp.14539-14548. doi: 10.1021/ja036505h

Xu J.M.,ChenD.F.,WuJ.F., et al. Nanowires-assembled TiO2 nanorods anchored on multilayer graphene for high-performance anodes of lithium-ion batteries. Nanomaterials, 2022, Vol.12, pp.3697. doi: 10.3390/nano12203697

Nada F. M., Saleem A.H., Shawki K.M. Hydrothermally growth of TiO2 nanorods, characterization and annealing temperature effect. Kuwait journal of science, 2021, Vol.48, pp.3-6. doi: 10.48129/kjs.v48i3.10417

Chakhtouna H., Benzeid H., Zari N. et al. Recent progress on Ag/TiO2 photocatalysts: photocatalytic and bactericidal behaviors. Enviromental scince and pollution research, 2021, Vol.33, pp. 44638–44666. doi: 10.1007/s11356-021-14996-y

Gupta B., Melvin A.A., Matthews T., et al. TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production. Renewable & sustainable energy reviews, 2016, Vol.58, pp. 1366–1375. doi: 10.1016/j.rser.2015.12.236

Molinari R., Lavorato C., Argurio P. The Evolution of Photocatalytic Membrane Reactors over the Last 20 Years: A State of the rt Perspective. Catalyst, 2021, Vol.11, pp. 775. doi: 10.3390/catal11070775

Stroyuk A.L., Kryukov A.I., Kuchmii S.Y. Semiconductor photocatalytic systems for the production of hydrogen by the action of visible light. Theoretical and experimental chemistry, 2009, Vol.45, No.4, pp.209–233. doi: 10.1007/s11237-009-9095-4

Karthikeyan C., Arunachalam P., Ramachandran K. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. Journal of alloys and compounds, 2020, Vol.828, pp.154281. doi: 10.1016/j.jallcom.2020.154281

Dhinesh K.R., Thangappan R. R. Synthesis and characterization of LaFeO3/TiO2 nanocomposites for visible light photocatalytic activity. Journal of Physical and Chemistry of Solids, 2016, Vol. 23, pp. PCS7876. doi: 10.1016/j.jpcs.2016.10.005

Fu L., Zheng Y., Fu Z., et al. Synthesis of Ag decorated gra-phene-hierarchical TiO2 nanocomposite with enhanced photocatalytic activity. Funct Mater Lett, 2015, Vol.8, pp. 1550036–1550039. doi: 10.1142/S1793604715500368

Samir M., Geioushy R.A., El-Sherbiny S., et al. Enhancing the anti-ageing, antimicrobial activity and mechanical properties of surface-coated paper by Ag@TiO2-modified nanopigments, Environmental science and pollution research, 2022, Vol.29, pp. 72515-72527. doi: 10.1007/s11356-022-20935-2

Ke C.R., Guo J.S., Su Y.H., et al. The effect of silver nanopar-ticles/graphene-coupled TiO2 beads photocatalyst on the photoconversion efficiency of photoelectrochemical hydrogen production. Nanotechnology, 2016, Vol.27, pp. 435405–435412. doi: 10.1088/0957-4484/27/43/435405

Paul K.K., Giri P.K. Role of Surface plasmons and hot electrons on the multi-step photocatalytic decay by defect enriched Ag@TiO2 nanorods under visible light. Journal ofphysicalchemistry C, 2017, Vol.36, pp.20016-20030. doi: 10.1021/acs.jpcc.7b05328

Serikov T.M., Kayumova A.S., Baltabekov A.S. et al. Photocatalytic activity of nanocomposites based on titania nanorods and nanotubes doped with Ag and reduced graphene oxide nanoparticles. Nanobiotechnology Reports, 2023, Vol. 18, pp. 207–215. doi: 10.1134/S2635167623700040

Adachi M., Sakamoto M., Jiu J., et al. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem.B, 2006, Vol. 110, pp. 13872. doi: 10.1021/jp061693u

Wodka D., Bielańska E., Socha R.P., et al. Photocatalytic activity of titanium dioxide modified by silver nanoparticles. ACS Applied Materials & Interfaces, 2010, Vol. 2, pp.1945–1953. doi: 10.1021/am1002684

Downloads

Published online

2024-01-04

How to Cite

Kayumova, A., Serikov, T., Omarova, G., & Dzhakupova, M. (2024). EFFECT OF THE CONCENTRATION OF SILVER NANOPARTICLES ON THE PHOTOCATALYTIC ACTIVITY OF TITANIUM DIOXIDE NANORODS. Eurasian Physical Technical Journal, 20(4(46), 39–45. https://doi.org/10.31489/2023No4/39-45

Issue

Section

Materials science

Most read articles by the same author(s)

Loading...