ГЕЛИЙ ЖӘНЕ СУТЕГІ ИОНДАРЫМЕН СӘУЛЕЛЕНГЕН КЕЗДЕ AIN КЕРАМИКАЛАРДЫҢ РАДИАЦИЯЛЫҚ ЗАҚЫМДАНУЛАРЫНЫҢ ШЕКТІ ДОЗАЛАРЫН АНЫҚТАУ

ГЕЛИЙ ЖӘНЕ СУТЕГІ ИОНДАРЫМЕН СӘУЛЕЛЕНГЕН КЕЗДЕ AIN КЕРАМИКАЛАРДЫҢ РАДИАЦИЯЛЫҚ ЗАҚЫМДАНУЛАРЫНЫҢ ШЕКТІ ДОЗАЛАРЫН АНЫҚТАУ

Авторлар

DOI:

https://doi.org/10.31489/2021No2/23-28

Кілт сөздер:

алюминий нитриді, керамика, құрылымдық материалдар, радиациялық зақымданулар, гелийдің ісінуі, сынғыштар

Аңдатпа

"Жұмыс гелий және сутегі иондарымен сәулелендіру кезінде алюминий нитридіне негізделген поликристалды керамикалардағы жылу өткізгіштік, оқшаулау және механикалық қасиеттердің радиациялық зақымдану кинетикасын зерттеуге, сондай-ақ максималды қайтымсыз салдарларды тудыратын сыни дозаларды анықтауға арналған. Сәулелендіру үшін иондарды таңдау кейіннен газ толтырылған көпіршіктердің пайда болуымен беттік қабатының құрылымында гелий мен сутегі иондарының жинақталуы кезіндегі радиациялық зақымдану процестерін модельдеу мүмкіндігімен байланысты. Жүргізілген зерттеулер барысында 1х1017 ион/см2 жоғары гелий иондарымен сәулелену дозалары кезінде жылу өткізгіштіктің күрт төмендеуі және керамикаға төзімділіктің кемуі байқалады, бұл гелий көпіршіктерінің пайда болуының басталуымен және беттік қабаттың ішінара сыңғақтануымен байланысты. Алайда сәулелену дозасының 5х1017 ион/см2-ден жоғары мәндері жылу өткізгіштіктің және оқшаулау сипаттамаларының елеулі өзгерістеріне әкелмейді, бұл радиациялық зақымданулардың жинақталу әсерін және керамиканың тозу жылдамдығының төмендеуін көрсетеді. Гелий иондарымен сәулеленуден айырмашылығы, сутегі иондарымен 1-3х1017 ион/см2-ден жоғары дозаларға дейін сәулелену жылу оқшаулау сипаттамаларының айтарлықтай өзгерістеріне әкелмейді, бұл керамиканың гидрлеу процестеріне тұрақтылығын көрсетеді. "

References

"1 Aitkaliyeva A., et al. Irradiation effects in Generation IV nuclear reactor materials. Structural Materials for Generation IV Nuclear Reactors. Woodhead Publishing, 2017, pp. 253 – 283.

Milosavljević M., et al. A comparison of Ar ion implantation and swift heavy Xe ion irradiation effects on immiscible AlN/TiN multilayered nanostructures. Materials Chemistry and Physics. 2012, Vol.133, pp. 884 -892.

Zinkle S.J., et al. Microstructure of Swift Heavy Ion Irradiated SiC, Si 3 N 4 and AIN. MRS Online Proceedings Library. 2000, 650.1, pp. 3191 – 3196.

Crespillo M.L., Agulló-López F., and Zucchiatti A. Cumulative approaches to track formation under swift heavy ion (SHI) irradiation: Phenomenological correlation with formation energies of Frenkel pairs. Nuclear Instruments and Methods in Physics Research section B: Beam Interactions with Materials and Atoms. 2017, Vol. 394, pp. 20 – 27.

Al-Douri Y. Structural phase transition of boron nitride compound. Solid state communications. 2004, Vol.132.7, pp. 465 – 470.

Lushchik A., et al. Distinctive features of diffusion-controlled radiation defect recombination in stoichiometric magnesium aluminate spinel single crystals and transparent polycrystalline ceramics. Scientific reports. 2020, pp.1 – 9.

Yang Wei, et al. Preparation and performance of alumina ceramic coating doped with aluminum nitride by micro arc oxidation. Ceramics International. 2020, Vol. 46.10, pp. 17112 – 17116.

Tuleushev A.Z., et al. Ion charge influence on the molecular structure of polyethylene terephthalate films after irradiation with swift heavy ions. Crystals. 2020, Vol.10.6, pp. 479.

Li Shuyao, et al. Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation. Energy & Environmental Science. 2020, Vol.13.3, pp. 896-907.

Harris J.H. Sintered aluminum nitride ceramics for high-power electronic applications. JOM. 1998, Vol. 50.6, pp. 56-60.

Popov A.I., Balanzat E.F centre production in CsI and CsI–Tl crystals under Kr ion irradiation at 15 K. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2000, Vol. 166, pp. 545-549.

Xiao Xiazi, and Long Yu. Nano-indentation of ion-irradiated nuclear structural materials: A review. Nuclear Materials and Energy. 2019, pp. 100721-100730.

Murty K.L., Charit I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. Journal of Nuclear Materials. 2008, Vol. 383, pp. 189-195.

Lushchik A., et al. Influence of complex impurity centres on radiation damage in wide-gap metal oxides. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2016, Vol. 374, pp. 90-96.

Singh Fouran, et al. Micro-Raman investigations on zirconium oxide film during swift heavy ion irradiation to study crystalline-to-crystalline phase transformation kinetics by cascade overlap model. Journal of Applied Physics. 2019, Vol. 126.2, pp. 025901-025910.

Kozlovskiy A.L., et al. Radiation resistance of thin TiN films as a result of irradiation with low-energy Kr14+ ions. Ceramics International. 2020, Vol. 46.6, pp. 7970-7976.

Gladkikh T., et al. Changes in optical and structural properties of AlN after irradiation with C2+ ions of 40 keV. Vacuum. 2019, Vol. 161, pp.103-110.

Kimura Kazuie, Sumit Sharma, and Anatoli Popov. Fast electron–hole plasma luminescence from track-cores in heavy-ion irradiated wide-band-gap crystals. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2002, Vol. 191, pp. 48-53.

Averback R.S., et al. Defects in ion implanted and electron irradiated MgO and Al2O3. Radiation effects and defects in solids. 1995. Vol. 136.1-4, pp. 169-173.

Kotomin E.A., Kuzovkov V.N., and Popov A.I. The kinetics of defect aggregation and metal colloid formation in ionic solids under irradiation. Radiation effects and defects in solids. 2001. Vol. 155.1-4, pp. 113-125.

Tang Jinjin, et al. Effect of proton irradiation on the mobility of two-dimensional electron in AlGaN/AlN/GaN high electron mobility transistors at low temperature. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 2020, Vol. 38.2, pp. 023202-023210.

Qarra H.H., et al. Heavy ion irradiation damage in Zr2AlC MAX phase. Journal of Nuclear Materials. 2019, Vol.523, pp. 1-9.

Yano T., et al. Neutron irradiation effects on isotope tailored aluminum nitride ceramics by a fast reactor up to 2× l026 n/m2. Journal of Nuclear Materials. 2004, Vol. 329, pp. 1471-1475.

Bakan Emine, et al. High-temperature materials for power generation in gas turbines. Advanced Ceramics for Energy Conversion and Storage. 2020. Vol. 3, pp. 62-70.

Kozlovskiy A.L., et al. The influence of the energy of incident protons on the defect formation and radiation resistance of AlN ceramics. Solid State Sciences. 2020. Vol. 107, pp. 106367-106380.

Kozlovskiy A., et al. Dynamics of changes in structural properties of AlN ceramics after Xe+ 22 ion irradiation. Vacuum. 2018, Vol. 155, pp. 412-422.

Patino M.I., Doerner R.P., and Tynan G.R. Exposure of AlN and Al2O3 to low energy D and He plasmas. Nuclear Materials and Energy. 2020, pp. 100753-100760.

Werdecker Waltraud, and Fritz Aldinger. Aluminum nitride-an alternative ceramic substrate for high power applications in microcircuits. IEEE transactions on components, hybrids, and manufacturing technology. 1984, Vol. 7.4, pp. 399-404.

Bocanegra-Bernal M.H., and Matovic B. Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures. Materials Science and Engineering: A. 2010, Vol.527.6, pp. 1314-1338.

Kozlovskiy A., et al. Optical and structural properties of AlN ceramics irradiated with heavy ions. Optical Materials. 2019, Vol. 91, pp. 130-137.

Kozlovskiy A., et al. Influence of He-ion irradiation of ceramic AlN. Vacuum. 2019. Vol. 163. pp. 45-51.

Zdorovets M., et al. Study of helium swelling in nitride ceramics at different irradiation temperatures. Materials. 2019, Vol. 12.15, pp. 2415-2430.

Uglov V.V., et al. Surface blistering in ZrSiN nanocomposite films irradiated with He ions. Surface and Coatings Technology. 2020, pp. 125654-125660.

Uglov V.V., et al. Blistering in Helium-Ion-Irradiated Zirconium, Aluminum, and Chromium Nitride Films. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2020, Vol.14, pp. 359-365.

Evans J.H. An interbubble fracture mechanism of blister formation on helium-irradiated metals. Journal of Nuclear Materials. 1977. Vol. 68.2, pp. 129-140.

"

Downloads

How to Cite

Козловский A. (2021). ГЕЛИЙ ЖӘНЕ СУТЕГІ ИОНДАРЫМЕН СӘУЛЕЛЕНГЕН КЕЗДЕ AIN КЕРАМИКАЛАРДЫҢ РАДИАЦИЯЛЫҚ ЗАҚЫМДАНУЛАРЫНЫҢ ШЕКТІ ДОЗАЛАРЫН АНЫҚТАУ. Eurasian Physical Technical Journal, 18(2(36), 23–28. https://doi.org/10.31489/2021No2/23-28

Журналдың саны

Бөлім

Материалтану

Most read articles by the same author(s)

Loading...