Конформационная структура адсорбированного полиэлектролита на наночастице с невысокой проводимостью в переменном электрическом поле
DOI:
https://doi.org/10.31489/2023No3/5-19Ключевые слова:
полупроводниковая наночастица, макромолекула, конъюгаты, конформации, молекулярная динамикаАннотация
Предложена аналитическая форма модели квазиравновесной конформационной структуры звеньев гауссовой цепи полиэлектролита, адсорбированного на наносфероиде с относительно низкой электрической проводимостью (нелегированный полупроводник), поляризующемся во внешнем гармонически изменяющемся квазистатическом электрическом поле с частотой, существенно меньшей плазменной частоты материала наночастицы. Обсуждаются варианты модели, выходящие за рамки квазистатического приближения, то есть учитывающие эффекты запаздывания, проявление которых будет заметным в случае достаточно протяженных наноструктур. Методом молекулярной динамики исследованы электрически индуцированные конформационные изменения в целом нейтральных полиамфолитных полипептидов на поверхности сферической германиевой наночастицы, находящейся в статическом или в переменном внешнем электрическом поле. В статическом электрическом поле в случае небольшого расстояния между заряженными звеньями в полиамфолите образовывалось большое количество петель макроцепи, вытянутых в направлении оси поляризации наночастицы. В случае, если расстояние между противоположно заряженными аминокислотными остатками полипептида превышало диаметр наночастицы, заряженные звенья в основном были локализованы в противоположно заряженных приполярных областях поляризованной германиевой наночастицы. В переменном электрическом поле образовывалась опоясывающая полиамфолитная опушка в экваториальной области наночастицы, звенья макроцепи которой при увеличении амплитуды поляризующего переменного электрического поля десорбировались с поверхности.
Библиографические ссылки
Lowe S.B., Dick J.A.G., Cohen B.E., et al. Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot–peptide conjugates. ACS Nano, 2012, Vol. 6, pp. 851-857. doi:10.1021/nn204361s. DOI: https://doi.org/10.1021/nn204361s
Yang L., Ahn D.J., Koo E. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization. Materials Science and Engineering: C, 2016, Vol. 69, pp. 625-630. doi:10.1016/j.msec.2016.07.021. DOI: https://doi.org/10.1016/j.msec.2016.07.021
Perng W., Palui G., Wang W., Mattoussi H. Elucidating the role of surface coating in the promotion or prevention of protein corona around quantum dots. Bioconjugate Chem., 2019, Vol. 30. pp. 2469-2480. doi:10.1021/acs.bioconjchem.9b00549. DOI: https://doi.org/10.1021/acs.bioconjchem.9b00549
Green C.M., Spangler J., Susumu K., et al. Quantum dot-based molecular beacons for quantitative detection of nucleic acids with CRISPR/Cas(N) nucleases. ACS Nano, 2022, Vol. 16. pp. 20693-20704. doi:10.1021/acsnano.2c07749. DOI: https://doi.org/10.1021/acsnano.2c07749
Jin Z., Dridi N., Palui G. et al. Quantum dot–peptide conjugates as energy transfer probes for sensing the proteolytic activity of matrix metalloproteinase-14. Anal. Chem., 2023, Vol. 95, pp. 2713–2722. doi:10.1021/acs.analchem.2c034002713-2722. DOI: https://doi.org/10.1021/acs.analchem.2c03400
Nejad Z.K., Khandar A.A., Khatamian M. Graphene quantum dots based MnFe2O4@SiO2 magnetic nanostructure as a pH-sensitive fluorescence resonance energy transfer (FRET) system to enhance the anticancer effect of the drug. Intern. Journal of Pharmaceutics, 2022, Vol. 628. pp. 122254. doi: 10.1016/j.ijpharm.2022.122254. DOI: https://doi.org/10.1016/j.ijpharm.2022.122254
Tade R.S., Patil P.O. Fabrication of poly (aspartic) acid functionalized graphene quantum dots based FRET sensor for selective and sensitive detection of MAGE-A11 antigen. Microchemical Journal, 2022, Vol. 183, pp. 107971. doi:10.1016/j.microc.2022.107971. DOI: https://doi.org/10.1016/j.microc.2022.107971
Nevidimov. A.V., Razumov V.F. Nonradiative Energy Transfer in “Colloidal Quantum Dot Nanocluster–Dye” Hybrid Nanostructures: Computer Experiment. High Energy Chemistry, 2020, Vol. 54, pp. 28–35. https://doi.org/10.1134/S0018143920010105. DOI: https://doi.org/10.1134/S0018143920010105
Nikolenko L.M., Pevtsov D.N., Brichkin S.B. Quantum-size effect for intraband electronic transition in colloidal silver selenide quantum dots. High Energy Chemistry, 2022, Vol. 56, pp. 380–382. doi:10.1134/S0018143922050125. DOI: https://doi.org/10.1134/S0018143922050125
Cantini E., Wang X., Koelsch P., et al. Electrically Responsive Surfaces: Experimental and Theoretical Investigations. Acc. Chem. Res., 2016, Vol. 49, pp. 1223–1231. doi:10.1021/acs.accounts.6b00132. DOI: https://doi.org/10.1021/acs.accounts.6b00132
Zhao J., Wang X., Jiang N. et al. Polarization Effect and Electric Potential Changes in the Stimuli-Responsive Molecular Monolayers Under an External Electric Field. J. Phys. Chem. C, 2015, Vol. 119, pp. 22866–22881. doi:10.1021/acs.jpcc.5b04805. DOI: https://doi.org/10.1021/acs.jpcc.5b04805
Ghafari A.M., Domínguez S.E., Järvinen V. et al. In Situ Coupled Electrochemical-Goniometry as a Tool to Reveal Conformational Changes of Charged Peptides. Advanced Materials Interfaces, 2022, Vol. 9, pp. 2101480. doi:10.1002/admi.202101480. DOI: https://doi.org/10.1002/admi.202101480
Gomes B.S, Cantini E., Tommasone S. et al. On-Demand Electrical Switching of Antibody–Antigen Binding on Surfaces. ACS Appl. Bio Mater., 2018, Vol. 1, pp. 738–747. doi:10.1021/acsabm.8b00201. DOI: https://doi.org/10.1021/acsabm.8b00201
Kruchinin N.Y., Kucherenko M.G. Molecular-dynamics simulation of rearrangements in the conformational structure of polyampholytic macromolecules on the surface of a polarized metal nanoparticle. Colloid Journal, 2020, Vol. 82, pp. 136-143. doi:10.1134/S1061933X20020088. DOI: https://doi.org/10.1134/S1061933X20020088
Kruchinin N.Y., Kucherenko M.G. Conformational rearrangements of polyampholytic polypeptides on metal nanoparticle surface in microwave electric field: molecular-dynamics simulation. Colloid Journal, 2020, Vol. 82, pp. 392-402. doi:10.1134/S1061933X20040067. DOI: https://doi.org/10.1134/S1061933X20040067
Kruchinin N.Yu., Kucherenko M.G. Rearrangement of the conformational structure of polyampholytes on the surface of a metal nanowire in a transverse microwave electric field. Eurasian phys. tech. j. 2021, Vol.18, pp. 16-28. doi:10.31489/2021No1/16-28. DOI: https://doi.org/10.31489/2021No1/16-28
Kucherenko M.G., Kruchinin N.Yu., Neyasov P.P. Modeling of conformational changes of polyelectrolytes on the surface of a transversely polarized metal nanowire in an external electric field. Eurasian phys. tech. j. 2022, Vol. 19, pp. 19-29. doi:10.31489/2022No2/19-29. DOI: https://doi.org/10.31489/2022No2/19-29
Kruchinin N.Yu., Kucherenko M.G. Rearrangements in the conformational structure of polyampholytic polypeptides on the surface of a uniformly charged and polarized nanowire: Molecular dynamics simulation. Surfaces and Interfaces, 2021, Vol. 27, pp. 101517. doi:10.1016/j.surfin.2021.101517. DOI: https://doi.org/10.1016/j.surfin.2021.101517
Kruchinin N.Yu., Kucherenko M.G. Molecular dynamics simulation of the conformational structure of uniform polypeptides on the surface of a polarized metal prolate nanospheroid with varying pH. Russian Journal of Physical Chemistry A, 2022, Vol. 96, pp. 624-632. doi:10.1134/S0036024422030141. DOI: https://doi.org/10.1134/S0036024422030141
Kruchinin N.Yu., Kucherenko M.G. Modeling of electrical induced conformational changes of macromolecules on the surface of metallic nanospheroids. Materials Today: Proceedings, 2022, Vol. 71, Part 1, pp. 18-30. doi:10.1016/j.matpr.2022.07.139. DOI: https://doi.org/10.1016/j.matpr.2022.07.139
Kruchinin N.Yu., Kucherenko M.G. Rearrangements in the conformational structure of polyelectrolytes on the surface of a flattened metal nanospheroid in an alternating electric field. Colloid Journal, 2023, Vol. 85. pp. 44-58. doi:10.1134/S1061933X22600440. DOI: https://doi.org/10.1134/S1061933X22600440
Landau L.D., Pitaevskii L.P., Lifshitz E.M. Electrodynamics of Continuous Media, 2nd Edition, Elsevier Ltd., 1984, 460 p. DOI: https://doi.org/10.1016/B978-0-08-030275-1.50007-2
Grosberg A.Y., Khokhlov A.R. Statistical Physics of Macromolecules, 1994, AIP Press, New York. 347 p.
Klimov V.V. Nanoplasmonics, 2009, Moscow: Fizmatlit, 480 p. [in Russian]
Budak B.M., Samarskii A.A., Tikhonov A.N. Collection of problems in mathematical physics, 1979, M.: Science, 686 p. [in Russian]
Phillips J.C., Braun R., Wang W., et al. Scalable molecular dynamics with NAMD. J Comput Chem., 2005, Vol. 26, pp. 1781-1802. https://doi.org/10.1002/jcc.20289. DOI: https://doi.org/10.1002/jcc.20289
MacKerell A.D. Jr., Bashford D., Bellott M., et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins J. Phys. Chem. B, 1998, Vol. 102, pp. 3586-3616. doi:10.1021/jp973084f. DOI: https://doi.org/10.1021/jp973084f
Huang J., Rauscher S., Nawrocki G. et al. CHARMM36m: an improved force field for folded and intrinsically dis-ordered proteins. Nature Methods, 2016, Vol.14, pp. 71-73. doi:10.1038/nmeth.4067. DOI: https://doi.org/10.1038/nmeth.4067
Rappe A.K., Casewit C.J., Colwell K.S., et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc., 1992, Vol. 114, pp. 10024–10035. doi:10.1021/ja00051a040. DOI: https://doi.org/10.1021/ja00051a040
Eidani M., Akbarzadeh H., Mehrjouei E., et al. Thermal stability and melting mechanism of diamond nanothreads: Insight from molecular dynamics simulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, Vol. 655, pp. 130248. doi:10.1016/j.colsurfa.2022.130248 DOI: https://doi.org/10.1016/j.colsurfa.2022.130248
Marashizadeh P., Abshirini M., Saha M., et al. Interfacial properties of ZnO nanowire-enhanced carbon fiber composites: a molecular dynamics simulation study. Langmuir, 2021, Vol. 37, pp. 7138–7146. doi:10.1021/acs.langmuir.1c00711. DOI: https://doi.org/10.1021/acs.langmuir.1c00711
Darden T., York D., Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, Vol. 98, pp. 10089-10092. doi:10.1063/1.464397. DOI: https://doi.org/10.1063/1.464397
Jorgensen W.L., Chandrasekhar J., Madura J.D., et al. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, Vol. 79, pp. 926-935. doi:10.1063/1.445869. DOI: https://doi.org/10.1063/1.445869
Izmailov S.V. Electrodynamics course, 1962, M .: State educational and pedagogical publishing house of the Ministry of Education of the RSFSR, 439 p. [in Russian]
Shankla M., Aksimentiev A. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged grapheme. Nat Commun., 2014, Vol. 5, pp. 5171. doi:10.1038/ncomms6171. DOI: https://doi.org/10.1038/ncomms6171












