ТЕРМОЭЛЕКТРИЧЕКИЙ КОНТРОЛЬ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ СИСТЕМЫ КОРПУС-ТЕРМОИНТЕРФЕЙС-РАДИАТОР
DOI:
https://doi.org/10.31489/2023No3/52-61Ключевые слова:
термоинтерфейс, тепловое сопротивление, термоЭДС, эффект Зеебека, термоэлектрический контрольАннотация
В статье предложено применять способ термоэлектрического контроля для определения теплофизических параметров термоинтерфейса. Термоинтерфейс расположен между металлическими поверхностями, между которыми при нагреве возникает термоЭДС, на любом этапе эксплуатации прибора. Приведены графики разницы температур от времени нагрева, измеренного термопарами, и измеренные с помощью термоЭДС, подтверждающие правильность термоэлектрического метода. Графики позволяют наглядно увидеть процесс теплопередачи при введении теплового сопротивления, флуктуации температуры и результирующей термоЭДС. Предлагаемый метод позволяет контролировать термическое сопротивление с погрешностью менее 8 %.
Библиографические ссылки
Liu Y., Li J. A protocol to further improve the thermal conductivity of silicone-matrix thermal interface material with nano-fillers. Thermochimica Acta, 2022, Vol. 708, pp. 179136. doi: 10.1016/j.tca.2021.179136 DOI: https://doi.org/10.1016/j.tca.2021.179136
Swamy M.C.K., Satyanarayan. A Review of Performance and Characterization of Conventional and Promising Thermal Interface Materials for Electronic Package Applications. Journal of Electronic Materials, 2019, Vol. 48, pp. 7623–7634. doi: 10.1007/S11664-019-07623-7 DOI: https://doi.org/10.1007/s11664-019-07623-7
Zhang Y., Ma J., Wei N., Yanga J., Pei Q.-X. Recent progress in the development of thermal interface materials: a review. Physical Chemistry Chemical Physics, 2021, Vol. 23, pp. 753-776. doi: 10.1039/d0cp05514j
Xing W., Xu Y., Song C., Deng T. Recent Advances in Thermal Interface Materials for Thermal Management of High-Power Electronics. Nanomaterials, 2022, Vol. 12, No.19, pp.3365. doi: 10.3390/nano12193365 DOI: https://doi.org/10.3390/nano12193365
Prasher R. Thermal Interface Materials: Historical Perspective, Status, and Future Directions, Proceedings of the IEEE, 2006, Vol. 94, No. 8, pp. 1571-1586. doi: 10.1109/JPROC.2006.879796 DOI: https://doi.org/10.1109/JPROC.2006.879796
Esau D. Thermal Paste Application. SEMIKRON INTERNATIONAL GmbH. 2010, Rev. 7, 6 p.
Schulz M. Thermal Interface – An Inconvenient Truth. Article Bodo’s Power Systems, 2010, Vol. 6, pp. 1-4.
Chung, D.D.L. Thermal interface materials. Journal of Materials Engineering and Performance, 2001, Vol. 10, pp. 56–59. doi: 10.1361/105994901770345358 DOI: https://doi.org/10.1361/105994901770345358
Becker G., Lee C., Lin Z. Thermal conductivity in advanced chips: Emerging generation of thermal greases offers advantages. Advanced Packaging, 2005, Vol. 14, No. 7, 14 p.
Roy C.K., Bhavnani S., Hamilton M.C., Johnson R.W., Knight R.W., Harris D.K. Thermal performance of low melting temperature alloys at the interface between dissimilar materials. Applied Thermal Engineering, 2016, Vol. 99, pp. 72-79. doi: 10.1016/j.applthermaleng.2016.01.036. DOI: https://doi.org/10.1016/j.applthermaleng.2016.01.036
GOST 19783-74 Organo-silicon heat-conducting paste. Specifications. Date of introduction: 01.01.1975. Official publication Moscow: IPK Publishing House of Standards, 1996. 11 p. [in Russian]
Drexhage P., Beckedahl P. Thermal Paste Application. SEMIKRON INTERNATIONAL GmbH, 2018, Rev. 7, 24 p.
Freyberg M., Daucher C. Application of thermal paste for Power Modules without base plate. Semikron International GmbH, 1999, 9 p.
Shishkin R. Development of the production technology of a new highly effective thermal grease. The International Journal of Advanced Manufacturing Technology, 2023, Vol. 126, pp. 709-717. doi: 10.1007/s00170-023-11149-y DOI: https://doi.org/10.1007/s00170-023-11149-y
Guo X, Cheng S, Cai W, Zhang Y, Zhang X. A review of carbon-based thermal interface materials: mechanism, thermal measurements and thermal properties. Materials & Design, 2021, Vol. 209, pp. 109936. doi: 10.1016/j.matdes.2021.109936 DOI: https://doi.org/10.1016/j.matdes.2021.109936
Zhang Y., Ma J., Wei N., Yang J., Pei Q.X. Recent progress in the development of thermal interface materials: a review. Physical Chemistry Chemical Physics, 2021, Vol. 23, pp. 753–776. doi: 10.1039/d0cp05514j. DOI: https://doi.org/10.1039/D0CP05514J
Sarvar F., Whalley D.C., Conway P.P. Thermal Interface Materials - A Review of the State of the Art. Proc. of the 1st Electronic System integration Technology Conference, 2006, pp. 1292-1302. doi: 10.1109/ESTC.2006.280178. DOI: https://doi.org/10.1109/ESTC.2006.280178
Otiaba K.C., Ekere N.N., Bhatti R.S., Mallik S., Alam M.O., Amalu E.H. Thermal interface materials for automotive electronic control unit: Trends, technology and R&D challenges. Microelectronics Reliability, 2011, Vol. 51, No. 12, pp. 2031-2043. doi: 10.1016/j.microrel.2011.05.001. DOI: https://doi.org/10.1016/j.microrel.2011.05.001
Smirnov V.I., Sergeev V.A., Gavrikov A.A., Shorin A.M. Modulation method for measuring thermal impedance components of semiconductor devices. Microelectronics Reliability, 2018, Vol. 80, pp. 205–212. DOI: https://doi.org/10.1016/j.microrel.2017.11.024
Smirnov V.I., Sergeev V.A., Gavrikov A.A., Shorin A.M. Thermal impedance meter for power MOSFET and IGBT transistors. Proceeding of the IEEE Transactions on Power Electronics, 2018. Vol. 33, No. 7, pp. 6211-6216. DOI: https://doi.org/10.1109/TPEL.2017.2740961
Smirnov V.I., Sergeev V.A., Gavrikov A.A., Kulikov A.A., Shorin A.M. Comparative analysis of standard and modulation methods for measuring thermal resistance of power bipolar transistors. Journal of Radio Electronics, 2019, No. 1, pp. 1-14. [in Russian]
Smirnov V.I., Sergeev V.A., Gavrikov A.A., Kulikov A.A. The study of current localization in solar cells during the thermal resistance measurements. Moscow Workshop on Electronic and Networking Technologies 2020 – Proceedings, 2020, pp. 9067386. DOI: https://doi.org/10.1109/MWENT47943.2020.9067386
Smirnov V.I., Sergeev V., Gavrikov A., Kulikov A. Measuring thermal resistance of gan hemts using modulation method. Proceeding of the IEEE Transactions on Electron Devices, 2020, Vol. 67, No. 10, pp. 4112-4117. DOI: https://doi.org/10.1109/TED.2020.3013509
Abouellail A.A., Obach I.I., Soldatov A.A., Soldatov A.I. Surface inspection problems in thermoelectric testing. Proc. of the MATEC Web of Conferences, 2017, Vol. 102, pp. 01001. doi: 10.1051/matecconf/201710201001. DOI: https://doi.org/10.1051/matecconf/201710201001
Soldatov A.I., Soldatov A.A., Sorokin P.V., Loginov E.L., Abouellail A.A., Kozhemyak O.A., Bortalevich S.I. Control system for device «thermotest». Proceeding of the Intern. Siberian Conf. on Control and Communications (SIBCON), 2016, pp. 1–5. doi: 10.1109/SIBCON.2016.7491869. DOI: https://doi.org/10.1109/SIBCON.2016.7491869
Carreon H., Nagy P.B., Blodgett M. Thermoelectric nondestructive evaluation of residual stress in shot-peened metals. AIP Conference Proceedings, 2002, Vol. 615, No. 1, pp. 1667–167. doi: 10.1063/1.1472993. DOI: https://doi.org/10.1063/1.1472993
Carreon H., Nagy P.B., Blodgett M. Thermoelectric nondestructive evaluation of residual stress in shot-peened metals. Research in Nondestructive Evaluation, 2002, Vol. 14, pp. 59-80. doi: 10.1007/s00164-002-0001-x. DOI: https://doi.org/10.1080/09349840208968192
Anatychuk L.I. On the discovery of thermoelectricity by volta. Journal of thermoelectricity, 2004. No. 2. pp. 5–10.
Lasance C.J.M. The Seebeck Coefficient. Available at: https://www.electronics-cooling.com/2006/11/the-seebeck-coefficient/ (accessed 7 February 2023).
Vasil’ev, I.M., Soldatov, A.A., Dement’ev, A.A., Soldatov, A.I. Control of Quality of Applying Heat-Conducting Compound. Russian Journal of Nondestructive Testing, 2020, Vol. 56, No. 3, pp. 284–290. doi: 10.1134/S1061830920030110. DOI: https://doi.org/10.1134/S1061830920030110
Vasiliev I.M., Soldatov A.I., Abouellail A.A., Kostina M.A., Soldatov A.A., Soldatov D.A., Bortalevich S. Thermoelectric Quality Control of the Application of Heat-Conducting Compound. Studies in Systems, Decision and Control, 2021, Vol. 351, рр. 59–68. doi: 10.1007/978-3-030-68103-6_6. DOI: https://doi.org/10.1007/978-3-030-68103-6_6
Vasiliev I.M., Soldatov, A.I., Dementiev, A.A., Soldatov A.A., Abouellail, A.A. Automatic device for testing thermal resistance with thermoelectric effect. Material Science Forum, 2020, No. 4, pp. 154–156. doi: 10.1088/1742-6596/1499/1/012047. DOI: https://doi.org/10.1088/1742-6596/1499/1/012047
Hu J., Nagy P.B. On the role of interface imperfections in thermoelectric nondestructive materials characterization. Applied Physics Letters, 1998, Vol. 73, pp. 467-469. doi: http://dx.doi.org/10.1063/1.121902. DOI: https://doi.org/10.1063/1.121902
Soldatov, A.I., Soldatov A.A., Kostina M.A., Kozhemyak O.A. Experimental Studies of Thermoelectric Characteristics of Plastically Deformed Steels ST3, 08KP and 12H18N10T. Key Engineering Materials, 2016, Vol. 685, pp. 310–314. doi:10.4028/www.scientific.net/kem.685.310. DOI: https://doi.org/10.4028/www.scientific.net/KEM.685.310
Soldatov A.I., Soldatov A.A., Sorokin P.V., Abouellail A.A., Obach I.I., Bortalevich V.Y., Shinyakov Y.A., Sukhorukov M.P. An experimental setup for studying electric characteristics of thermocouples. Proceeding of the Intern. Siberian Conf. on Control and Communications (SIBCON), 2017, pp. 1-4. doi: 10.1109/SIBCON.2017.7998534. DOI: https://doi.org/10.1109/SIBCON.2017.7998534












