ФРАКТАЛДЫ МОРФОЛОГИЯҒА ИЕ МЕЗОКЕУЕКТІ МАТЕРИАЛДАРДАҒЫ ФЕРРОМАГНИТТІК ЖӘНЕ ПАРАМАГНИТТІК КҮЙЛЕР АРАСЫНДАҒЫ АУЫСУ ТУРАЛЫ
DOI:
https://doi.org/10.31489/2021No2/6-11Кілт сөздер:
мезокеуекті материалдар, екінші ретті фазалық ауысу, ферромагнетизм, Кюри температурасы, біріктіруші энергияАңдатпа
"Берілген жұмыста мезокеуекті ферромагниттік материалдардағы кеуектердің болуы және олардың морфологиясының магниттік өзгерістердің температурасына әсері көрсетілген. Модельдік есептеулердің нәтижелерінен Кюри температурасының айтарлықтай төмен мәндері кезінде макроскопиялық мезокеуекті құрылымдарды алу мүмкіндігі анықталды, оның мөлшері кеуек пішінінің «күрделенуімен» қосымша кемиді. Нәтижелер материалдың Кюри температурасы мен оның когезия энергиясы арасындағы эксперименттік тексерілген корреляциясы негізінде алынған және таза мезокеуекті темір, никель және кобальт мысалында суреттелген. Фракталдық геометрия әдістерін пайдалана отырып, кеуектердің морфологиясының сипаттамасы жүргізілген. Соңғы бөлімде Кюри температурасының басқарылатын мәнімен кеуекті материалдарды практикалық қолданудың әр түрлі нұсқалары талқыланады. "
References
"1 Binns C. (ed.) Nanomagnetism: fundamentals and applications. Newnes, Front. nanosc. 2014, 328 p.
Tannous C., Comstock R.L. Magnetic information-storage materials. In: Springer handbook of electronic and photonic materials. Cham, Springer. 2017, pp. 1185 – 1220. https://doi.org/10.1134/S1063776117010046.
Wang S.X., Li G.. Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE trans. magn. 2008, Vol. 44, pp. 1687 – 1702. https://doi.org/10.1109/TMAG.2008.920962.
Lashkarev G.V., Radchenko M.V., Bugaiova M.E., et.al. Ferromagnetic nanocomposites as spintronic mater-ials with controlled magnetic structure. Low temp. phys. 2013, Vol. 39, No. 1, pp. 66–75. https://doi.org/10.1063/1.4776232.
Spirou S.V., Basini M., Lascialfari A., et al. Magnetic hyperthermia and radiationtherapy: radiobiological principles and current practice. Nanomaterials. 2018, Vol. 8, No. 401. https://doi.org/10.3390/nano8060401.
Mihaela O. Study about the possibility to control the superparamagnetism-superferromagnetism transition in magnetic nanoparticle systems. J. magn. magn. mater. 2013, Vol. 343, pp. 189 – 193. https://doi.org/10.1016/j.jmmm.2013.05.011.
Marrows C.H., Perez M., Hickey B.J. Finite size scaling effects in giant magnetoresistance multilayers. J. phys.: condens. matter. 2006, Vol. 18, No. 243. https://doi.org/10.1088/0953-8984/18/1/017.
Lobov I.D., Kirillova M.M., Romashev L.N., et al. Magnetorefractive effect and giant magnetoresistance in Fe(tx)/Cr superlattices. Phys. solid state. 2009, Vol. 51, No. 12, pp. 2337 – 2341. https://doi.org/10.1134/S1063783409120099.
Temiryazev A.G., Temiryazeva M.P., Zdoroveyshchev A.V., et al. Formation of a domain structure in multilayer CoPt films by magnetic probe of an atomic force microscope. Phys. solid state. 2018, Vol. 60,
No. 11, pp. 2200 – 2206. https://doi.org/10.1134/S1063783418110318.
Filev V.G., Raskov R.C. Magnetic catalysis of chiral symmetry breaking: a holographic perspective. Adv. high energy phys. 2010, No. 473206. https://doi.org/10.1155/2010/473206.
Fisher M.E, Barber M.N. Scaling theory for finite-size effects in the critical region. Phys. rev. lett. 1972,
Vol. 28, pp. 1516 – 1519. https://doi.org/10.1103/PhysRevLett.28.1516.
Sun C.Q., Zhong W.H., Li S., et al. Coordination imperfection suppressed phase stability of ferromagnetic, ferroelectric, and superconductive nanosolids. J. phys.chem. B. 2004, Vol. 108, pp. 1080 – 1084. https://doi.org/10.1021/jp0372946.
Yang C.C., Jiang Q. Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals. Acta mater. 2005, Vol. 53, pp. 3305 – 3311. https://doi.org/10.1016/j.actamat.2005.03.039.
Ling-fei C., Dan X., Ming-xing G., et al. Size and shape effects on Curie temperature of ferromagnetic nanoparticles. Trans. nonferrous met. soc. China. 2007. Vol. 17, pp. 1451 – 1455. https://doi.org/10.1016/S1003-6326(07)60293-3.
Delavari H., Hosseini H.M., Simchi A. A simple model for the size- and shape-dependent Curie temperature of freestanding Ni and Fe nanoparticles based on the average coordination number and atomic cohesive energy. J. chem. phys. 2011, Vol. 383, pp. 1 – 5. https://doi.org/10.1016/j.chemphys.2011.03.010.
He X., Zhong W., Au C.-T., et al. Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method. Nanoscale res. lett. 2013, Vol. 8, No. 446. https://doi.org/10.1186/1556-276X-8-446.
Nikiforov V.N., Koksharov Yu.A., Polyakov S.N., et al. Magnetism and Verwey transition in magnetite nanoparticles in thin polymer film. J. alloys compd. 2013, Vol. 569, pp. 58 – 61. https://doi.org/10.1016/j.jallcom.2013.02.059.
Shuai Z., Li H. Size-dependent piezoelectric coefficient and Curie temperature of nanoparticles. Nanomaterials and energy. 2017, Vol. 6, No. 2, pp. 53 – 58. https://doi.org/10.1680/jnaen.16.00014.
Nikiforov V.N., Ignatenko A.N., Irkhin V.Yu. Size and surface effects on the magnetism of magnetite and maghemite nanoparticles. J. exp. theor. phys. 2017, Vol. 124, No. 2, pp. 304 – 310. https://doi.org/10.1134/S1063776117010046.
Essajai R., Benhouria Y., Rachadi A., et al. Shape-dependent structural and magnetic properties of Fe nanoparticles studied through simulation methods. RSC adv. 2019, Vol. 9, pp. 22057 – 22063. https://doi.org/10.1039/C9RA03047F.
Stolyar S.V., Komogortsev S.V., Chekanova L.A., et al. Magnetite nanocrystals with a high magnetic anisotropy constant due to the particle shape. Tech. phys. lett. 2019, Vol. 45, No. 9, pp. 878 – 881. https://doi.org/10.1134/S1063785019090116.
Gaev D.S., Rekhviashvili S.Sh. Kinetics of crack formation in porous silicon. Semiconductors. 2012, Vol. 46, No. 2, pp. 137 – 140. https://doi.org/10.1134/S1063782612020108.
Błaszczyński T., Ślosarczyk A., Morawski M. Synthesis of silica aerogel by supercritical drying method. Procedia eng. 2013, Vol. 57, pp. 200 – 206. https://doi.org/10.1016/j.proeng.2013.04.028.
Chae H.K., Siberio-Pérez D.Y., Kim J., et al. A route to high surface area,porosity and incusion of large molecules in crystals. Nature. 2004, Vol. 427, pp. 523 – 527. https://doi.org/10.1038/nature02311.
Chuvil’deev V.N., Nokhrin A.V., Kopylov V.I., et al. Spark plasma sintering for high-speed diffusion bonding of the ultrafine-grained near-α Ti–5Al–2V alloy with high strength and corrosion resistance for nuclear engineering. J. mater. sci. 2019, Vol. 54, pp. 14926 – 14949. https://doi.org/10.1007/s10853-019-03926-6.
Ganeriwala R., Zohdi T.I. Multiphysics modeling and simulation of selective laser sintering manufacturing processes. Procedia CIRP. 2014, Vol. 14, pp. 299 – 304. https://doi.org/10.1016/j.procir.2014.03.015.
Berner M.K., Zarko V.E., Talawar M.B. Nanoparticles of energetic materials: synthesis and properties (review). Combust., explos., shock waves. 2013, Vol. 49, pp. 625 – 647. https://doi.org/10.1134/S0010508213060014.
Hakamada M., Mabuchi M. Nanoporous Ni fabricated by dealloying of rolled Ni-Mn sheet. Procedia eng. 2014, Vol. 81, pp. 2159 – 2164. https://doi.org/10.1016/j.proeng.2014.10.302.
Zhanabaev Z.Zh., Ibraimov M.K., Sagidolda E. Electrical properties of fractal nanofilms of porous silicon. Eurasian phys. tech. j. 2013, Vol. 10, No.1, pp. 3 – 6.
Shishulin A.V., Fedoseev V.B. On some peculiarities of stratification of liquid solutions within pores of fractal shape. J. mol. liq. 2019, Vol. 278, pp. 363 – 367. https://doi.org/10.1016/j.molliq.2019.01.050.
Shishulin A.V., Fedoseev V.B. Peculiarities of phase transformations of polymer solutions in deformable porous matrices. Tech. phys. lett. 2019, Vol. 45, No. 7, pp. 697 – 699. https://doi.org/10.1134/S1063785019070289.
Shishulin A.V., Fedoseev V.B. Stratifying polymer solutions in microsized pores: phase transitions induced by deformation of a porous material. Tech. phys. 2020, Vol. 65, No. 3, pp. 340 – 346. https://doi.org/10.1134/S1063784220030238.
Magomedov M.N. Size dependence of the shape of a silicon crystal during melting. Tech. phys. lett. 2016,
Vol. 42, No. 7, pp. 761 – 764. https://doi.org/10.1134/S1063785016070245.
Guisbiers G., Buchaillot L. Universal size/shape-dependent law for characteristic temperatures. Phys. lett. A. 2009, Vol. 374, pp. 305 – 308. https://doi.org/10.1016/j.physleta.2009.10.054.
Guisbiers G. Size-dependent materials properties toward a universal equation. Nanoscale res. lett. 2010,
Vol. 5, No. 1132. https://doi.org/10.1007/s11671-010-9614-1.
Guisbiers G., Abudukelimu G. Influence of nanomorphology of the melting and catalytic properties of convex polyhedral nanoparticles. J. nanopart. res. 2013, Vol. 15, No. 1431. https://doi.org/10.1007/s11051-013-1431-x.
Aqra F., Ayyad A. Surface free energy of alkali and transition metal nanoparticles. Appl. surf. sci. 2014,
Vol. 324, pp. 308 – 313. https://doi.org/10.1016/j.apsusc.2014.07.004.
Potapov A.A. On the issues of fractal radio electronics: Processing of multidimensional signals, radiolocation, nanotechnology, radio engineering elements and sensors. Eurasian phys. tech. j. 2018, Vol. 15, No. 2, pp. 5 – 15.
Fedoseev V.B., Potapov A.A., Shishulin A.V., Fedoseeva E.N. Size and shape effect on the phase transitions in a small system with fractal interphase boundaries. Eurasian phys. tech. j. 2017, Vol. 14, No.1, pp. 18 – 24.
Shishulin A.V., Fedoseev V.B., Shishulina A.V. Melting behavior of fractal-shaped nanoparticles (the example of Si-Ge system). Tech. phys. 2019, Vol. 64, No. 9, pp. 1343 – 1349. https://doi.org/10.1134/S1063784219090172.
Shishulin A.V., Fedoseev V.B. On mutual solubility in submicron-sized particles of the Pt-Au catalytic system. Kinet. catal. 2019, Vol. 60, No. 3, pp. 315-319. https://doi.org/10.1134/S0023158419030121.
Shishulin A.V., Potapov A.A., Fedoseev V.B. Phase equilibria in fractal core-shell nanoparticles of Pb5(VO4)3Cl – Pb5(PO4)3Cl system: the influence of size and shape. In: Z. Hu,
S. Petoukhov, M. He (eds.). Advances in artificial systems for medicine and education II. Cham., Springer. 2020,
pp. 405 – 413. https://doi.org/10.1007/978-3-030-12082-5_37.
Fedoseev V.B., Shishulin A.V. On the size distribution of dispersed fractal particles. Tech. phys. 2021, Vol. 66, No. 1, pp. 34 – 40. https://doi.org/10.1134/S1063784221010072.
Attarian Shandiz M. Effective coordination number model for the size dependency of physical properties of nanocrystals. J. phys.: condens. matter. 2008, Vol. 20, No. 325237. https://doi.org/10.1088/0953-8984/20/32/325237.
Len’shina N.A., Arsenyev M.V., Shurygina M.P., et al. Photoreduction of o-benzoquinone moiety in mono- and poly(quinone methacrylate) and on the surface of polymer matrix pores. High energy chem. 2017, Vol. 51, pp. 209 – 214. https://doi.org/10.1134/S0018143917030080.
Bronstein L.M., Sidorov S.N., Valetskii P.M. Nanostructured polymeric systems as nanoreactors for nanoparticle formation. Russ. chem. rev. 2004, Vol. 73, No. 5, pp. 501 – 515. https://doi.org/10.1070/RC2004v073 n05ABEH000782.
Villanueva A., De la Presa P., Alonso J.M., et al. Hyperthermia hela cell treatment with silica-coated manganese oxide nanoparticles. J. phys. chem. C. 2010, Vol. 114, pp. 1976–1981. https://doi.org/10.1021/jp907046f.
"