Термодинамические и электрофизические свойства нового полупроводника на основе оксидов редкоземельных и переходных металлов.
DOI:
https://doi.org/10.31489/2025N3/36-47Ключевые слова:
манганит, лантан, цирконий, натрий, теплоёмкость, термодинамические функции, электрофизикаАннотация
Исследование посвящено изучению нового соединения, сочетающего свойства манганитов и цирконатов, что открывает путь к созданию высокоэффективных функциональных материалов. Соединение синтезировано взаимодействием оксида лантана, оксида циркония, оксида марганца и карбоната натрия при температурах от 800 до 1200 °C и исследовано методами рентгеноструктурного анализа, включая определение параметров кубической решетки. Анализ температурной зависимости теплоёмкости выявил фазовые переходы второго рода, на основе которых выведены уравнения, описывающие её изменение. Рассчитаны термодинамические характеристики, такие как энтропия и энтальпия. Электрофизические измерения подтвердили полупроводниковую природу материала в определённом диапазоне температур и выявили высокие значения диэлектрической проницаемости, превосходящие значения эталонных материалов.
Библиографические ссылки
Karpasyuk V.K., Smirnov A.M., Badelin A.G. (2015) Features of constructing magnetic field sensors based on the colossal magnetoresistance effect. Caspian Journal: Management and High Technologies, 4, 291 – 297. [in Russian]. Available at: https://hi-tech.asu-edu.ru/files/4(32)/291-297.pdf
Menglei Li, Hengxin Tan, Wenhui Duan (2020) Hexagonal rare-earth manganites and ferrites: a review of improper ferroelectricity, magnetoelectric coupling, and unusual domain walls. Phys. Chem. Chem. Phys., 22, 14415 – 14432. https://doi.org/10.1039/D0CP02195D DOI: https://doi.org/10.1039/D0CP02195D
Yang Shen, Ce-Wen Nan. (2023) High thermal conductivity dielectric polymers show record high capacitive performance at high temperatures. National Science Review, 10 (11), nwad224. https://doi.org/10.1093/nsr/nwad224 DOI: https://doi.org/10.1093/nsr/nwad224
Chabushkin A.N., Lyapin A.A., Ryabochkina P.A., Antipov O.L., Artemov S.A., Lomonova E.E. (2018) CW and Q-switched 2 m solid-state laser on ZrO2–Y2O3–HO crystals pumped by a Tm fiber laser. Laser Phys, 28 (3), 035803. https://doi.org/10.1088/1555-6611/aa962f DOI: https://doi.org/10.1088/1555-6611/aa962f
Zhirenkinа N.V. (2022) Technology of Powder Synthesis Based on Zirconium Dioxide for the Production of High-Density Ceramics. 2.6.14. Technology of Silicate and Refractory Nonmetallic Materials. Dissertation for the Degree of Candidate of Technical Sciences. Yekaterinburg, 159.
Arachi Y., Sakai H., Yamamoto O., Takeda Y., Imanishai N. (1999) Electrical conductivity of the ZrO2–Ln2O3 (Ln=lanthanides) system. Solid State Ionics, 121, 1-4, 133 –139. https://doi.org/10.1016/s0167-2738(98)00540-2 DOI: https://doi.org/10.1016/S0167-2738(98)00540-2
Borik M.A, Bublik V.T., Kulebyakin A.V., Lomonova E.E., Milovich F.O., Myzina V.A., Osiko V.V., Tabachkova N.Y. (2014) Phase composition, structure and mechanical properties of PSZ (partially stabilized zirconia) crystals as a function of stabilizing impurity content. Alloys and Compounds, 586, 231 – 235. https://doi.org/10.1016/j.jallcom.2013.01.126 DOI: https://doi.org/10.1016/j.jallcom.2013.01.126
Zadorozhnaya O.Y., Napochatov Y.K., Agarkova E.A., Tiunova O.V. (2020) Layered sold-electrolyte membranes based on zirconia: production technology. Russian Journal of Electrochemistry, 56 (2), 124 – 131. https://doi.org/10.1134/S1023193520020123 DOI: https://doi.org/10.1134/S1023193520020123
Aktas B., Tekeli S., Kucuktuvek M. (2014) Electrical Conductivity of Er2O3-Doped c-ZrO2 Ceramics. J. of Materi Eng and Perform, 23, 349–355. https://doi.org/10.1007/s11665-013-0750-5 DOI: https://doi.org/10.1007/s11665-013-0750-5
Borik M.A., Volkova T.V., Kulebyakin A.V., Kuritsyna I.E., Lomonova E.E., Myzina V.A., Milovich F.O., Ryabochkina P.A., Tabachkova N.Yu., Zentsova A.I., Popov P.A. (2020) Thermal Conductivity of Cubic ZrO2 Single Crystals Stabilized with Yttrium Oxide. Physics of the Solid State, 62, 1, 235 – 239. https://doi.org/10.1134/ s1063783420010072 DOI: https://doi.org/10.1134/S1063783420010072
Guskov V.N. Gavrichev K.S. Gagarin P.G., Guskov A.V. (2019) Thermodynamic Functions of Complex Zirconia Based Lanthanide Oxides-Pyrochlores Ln2Zr2O7 (Ln = La, Pr, Sm, Eu, Gd) and Fluorites Ln2O3·2ZrO2 (Ln = Tb, Ho, Er, Tm). Russ. J. Inorg. Chem, 64, 10, 1265 - 1281. https://doi.org/10.1134/S0036023619100048 DOI: https://doi.org/10.1134/S0036023619100048
Stroeva A.Yu., Vorotnikov V.A., Bervitskaya O.S., Ichetovkinа V.A., Ichetovkin Z.N., Duvakin A.M., Ananchenko B.A., Kuzmin A.V. (2024) The effect of synthesis technique on the microstructure of doped lanthanum zirconate materials. Electrochemical Energetics, 24, 4, 185 - 190. [in Russian]. https://doi.org/10.18500/1608-4039-2024-24-4-185-190 DOI: https://doi.org/10.18500/1608-4039-2024-24-4-185-190
Proshkin S. (2018) Multipurpose calorimeter to measure thermophysical properties ARPN Journal of Engineering and Applied Sciences, 2018, 13, 5, 1827 – 1832.
Bychinskii V.A., Tupitsyn A.A., Mukhetdinova A.V., Chudnenko K.V., Fomichev S.V., Krenev V.A. (2013) Estimation of the heat capacity of individual substances on the basis of experimental enthalpy increments. Russian Journal of Inorganic Chemistry, 58(9), 1079 – 1084. https://doi.org/10.1134/s0036023613090040 DOI: https://doi.org/10.1134/S0036023613090040
Rustembekov K.T., Sharipova Z.M., Dyusekeeva A.T. (2012) Thermochemistry of selenates of some s- d- elements. Journal of international Scientific Publications: Materials, Methods & Technologies, 6, 286 - 295. Available at: https://www.scientific-publications.net/download/materials-methods-and-technologies-2012-2.pdf
Bodryakov V.Yu., Bykov A.A. (2015) Correlation characteristics of the temperature coefficient of volumetric expansion and heat capacity of corundum. Glass and ceramics, 2, 30. [in Russian]. https://doi.org/10.1007/s10717-015-9726-2 DOI: https://doi.org/10.1007/s10717-015-9726-2
Kassenov B.K., Kassenova Sh.B., Sagintaeva Zh.I., Kuanyshbekov E.E., Turtubaeva M.O. (2020) Calorimetric Research into the Heat Capacity of Novel Nano-sized Cobalt(Nickelite)-Cuprate-Manganites of LaBaMeIICuMnO6 (MeII= Co, Ni) and their Thermodynamic Properties. Eurasian Chemico-Technological Journal, 22, 27 – 33. https://doi.org/10.18321/ectj927 DOI: https://doi.org/10.18321/ectj927
Rustembekov K.T., Kasymova M.S., Kaikenov D.A., Fomin V.N., Aldabergenova S.K., Toybek A.A. (2019) Calorimetry of new double dysprosium tellurite. Bulletin of Karaganda university. Chemistry series, 93, 1, 60 – 65. https://doi.org/10.31489/2019ch1/60-65 DOI: https://doi.org/10.31489/2019Ch1/60-65
Kasenova Sh.B., Sagintaeva Zh.I., Kasenov B.K., Ermaganbetov K.T., Kuanyshbekov E.E., Seisenova A.A., Smagulova D.I. (2013) Calorimetry and thermodynamic properties of nanostructured cuprate-manganite of lanthanum and strontium LaSr2CuMnO6. News of NAS RK. Chemical sciences series, 401, 5, 85 - 89. [in Russian]. Available at: https://nauka.kz/page.php?page_id=964&new&page=7845
Kasenov B.K., Kasenova Sh. B., Sagintaeva Zh.I., Kuanyshbekov E.E., Nuhuly A. Heat capacity of the new nano-size cobalt-cuprato-manganite LaLi2CoCuMnO6 in the interval of 298.15-673 K and its thermodynamic properties. Applied solid state Chemistry, 2018, 5 (4), 82-85. https://doi.org/10.18572/2619-0141-2018-4-5-82-85 DOI: https://doi.org/10.18572/2619-0141-2018-4-5-82-85
Rustembekov K., Dyusekeyeva A., Sharipova Z., Amanzhan A. (2012) Syntesis and thermochemistry of new metal-mixed tellurites. Chemical Bulletin of Kazakh National University, 65(1), 170-174. https://doi.org/10.15328/chemb_2012_1170-174 DOI: https://doi.org/10.15328/chemb_2012_1170-174
Kasenov B., Kasenova S., Sagintaeva Z., Kuanyshbekov E., Bekturganov Z., Zeynidenov A. (2022) Electrophysical properties of new nanostuctured copper-zinc manganite of lanthanum and magnesium. Eurasian Physical Technical Journal, 2022, 19(2(40), 42–47. https://doi.org/10.31489/2022No2/42-47 DOI: https://doi.org/10.31489/2022No2/42-47
Operation Manual. RLC meter (LCR-781). Moscow: PriST CJSC, 2012, 3 [in Russian]. Available at: https://prist.ru/upload/iblock/5a9/zv6bz0pv1oji5hdghyqzf8jwi26uaizw/Izmeritel-LCR_78200_5-mod._.pdf
Al Jaafari F.M.D., Korotkov L.N., Tolstykh N.A., Emelianov N.A., Pankova M.A., Popov S.V. (2023) Dielectric properties of mixed BaTiO3–SrTiO3 nanocomposites. Bulletin of the Russian Academy of Sciences: Physics, 87, 9, 1302 - 1307. https://doi.org/10.3103/S1062873823703197 DOI: https://doi.org/10.3103/S1062873823703197
Dikov R.V. (2022) Study of the Electrophysical Properties of Ferroelectric Piezo-Ceramics Based on Barium Titanate. Dissertation for the Degree of Candidate of Physical and Mathematical Sciences. 1.3.5. Physical Electronics. Volgograd, 128. [in Russian]. Available at: https://www.vstu.ru/upload/iblock/67e/67e5be44aa5e9d2ed1fecbb761609f3a.pdf
Wang J.J., Meng F.Y., Ma X.Q., Xu M.X., Chen L.Q. (2010) Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles J. Appl. Phys. 108, 034107. https://doi.org/10.1063/1.3462441 DOI: https://doi.org/10.1063/1.3462441
Mataev M., Madiyarova A., Patrin G., Abdraimova M., Nurbekova M. Durmenbayeva Zh. (2024) Synthesis of New Complex Ferrite Li0.5MnFe1.5O4: Chemical-Physical and Electrophysical Research, Materials, 17, 3754. https://doi.org/10.3390/ma17153754 DOI: https://doi.org/10.3390/ma17153754
Kasenov B.K., Kasenova Sh.B., Sagintaeva Zh.I., Kuanyshbekov E.E., Mukhtar A.A. (2022) Thermodynamic and Electrophysics of New LaCaCuZnMnO6 Copper – Zinc Manganite of Lanthanum and Calcium. High Temperature, 60, 4, 474 - 478. https://doi.org/10.1134/S0018151X22020225 DOI: https://doi.org/10.1134/S0018151X22020225
Guo G., Goldfeder J., Lan L., Ray A., Hanming Yang A., Chen B., J. L. Billinge S., Lipson H. (2024) Towards end-to-end structure determination from x-ray diffraction data using deep learning. npj Comput Mater, 10, 209. https://doi.org/10.1038/s41524-024-01401-8 DOI: https://doi.org/10.1038/s41524-024-01401-8
Turdiyev M.T., Kasenov B.K., Nukhuly A., Stoev M., Sagintaeva Zh.I., Kasenova Sh.B., Kuanyshbekov E.E. (2024) New zircon-manganites of lanthanum and alkali metals. Chemical Bulletin of Kazakh National University, 111, 1-2, 23 - 27. https://doi.org/10.15328/cb1372 DOI: https://doi.org/10.15328/cb1372
Viana, M,. Jouannin P., Pontier C., Chulia D. (2002) About pycnometric density measurements. Talanta, 57(3), 583 – 593. https://doi.org/10.1016/S0039-9140(02)00058-9 DOI: https://doi.org/10.1016/S0039-9140(02)00058-9
Hemminger W., Höhne G. (1984) Calorimetry: Fundamentals and Practice. Weinheim: Verlag Chemie, 310 p.
Goldenfeld N. Lectures on Phase Transitions and the Renormalization Group. CRC Press, Taylor & Francis Group, 1992. eBook published 2018. 420 p. https://doi.org/10.1201/9780429493492 DOI: https://doi.org/10.1201/9780429493492
Xue Y., Shen Z., Wu Z., Song C. (2023) Thickness dependence of the critical temperature and magnetic coupling in multilayer Cr₂Sn₂Te₆. Physical Review B., 108, 064416. https://doi.org/10.1103/PhysRevB.108.064416 DOI: https://doi.org/10.1103/PhysRevB.108.064416
Melchakova O.V., Zaitseva P.V., Mayorova A.V., Kulikova T.V., Pechishcheva N.V., Shunyaev K.Yu. (2019) Calculation of the Thermodynamic Properties of Metal Perrhenates and Their Use in Modeling Sample Preparation for Chemical Analysis. Analytics and Control, 23, 4, 570 – 579. https://doi.org/10.15826/analitika.2019.23.4.015 [in Russian]. DOI: https://doi.org/10.15826/analitika.2019.23.4.015