ENHANCEMENT OF POWER CONVERSION EFFICIENCY OF DYE-SENSITIZED SOLAR CELLS VIA INCORPORATION OF GAN SEMICONDUCTOR MATERIAL SYNTHESIZED IN HOT-WALL CHEMICAL VAPOR DEPOSITION FURNACE
DOI:
https://doi.org/10.31489/2024No4/131-139Keywords:
power conversion, semiconductor, dye, TiO2, GaNAbstract
This study discusses the results of plasma enhanced chemical vapor deposition synthesis of GaN on sapphire and silicon substrates using specific parameters: a forward output voltage of 150 watts, a N2 gas flow rate of 60 standard cubic centimeters per minute, a chamber pressure of 2.48 mmHg, and a synthesis time of 2hours. Characterization by scanning electron microscope, Raman and energy dispersive X-ray revealed the non-stoichiometric formation of GaN, with Ga clearly predominating in the composition. scanning electron microscope analysis of the substrate surface morphology revealed the presence of small islands, which are considered to be the first step in the chemical vapor deposition process. The research also examined the effects of incorporating GaN into the photoanode of dye-sensitized solar cells. The study investigated the optimal amount of GaN powder in the TiO2 matrix. The initial experiments used commercial GaN powder to determine the optimal weight percentage. Four different weight percentages (wt%) 10 wt%, 20 wt%, 30wt % and 40 wt% GaN were selected for the study. Among them, the 20 wt% GaN had the highest power conversion efficiency of 0.75%. The fill factor values showed a tendency to decrease as the weight fraction of GaN increased.
References
Hardin B.E., Snaith H.J., McGehee M.D. (2012) The renaissance of dye-sensitized solar cells. Nature Photonics, 6(3), 162–169. DOI: 10.1038/nphoton.2012.22. DOI: https://doi.org/10.1038/nphoton.2012.22
Sharma K., Sharma V., Sharma S.S. (2018) Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Research Letters, 13, Article 2760. DOI:10.1186/s11671-018-2760-6. DOI: https://doi.org/10.1186/s11671-018-2760-6
Abdullayev J.SH., Sapaev I.B. (2024) Optimizing the influence of doping and temperature on the electrophysical features of p-n and p-i-n junction structures. Eurasian physical technical journal, 21, 21-28. DOI:10.31489/2024No3/21-28. DOI: https://doi.org/10.31489/2024No3/21-28
Wei D. (2010) Dye sensitized solar cells. International Journal of Molecular Sciences, 11(3), 1103–1113. DOI:10.3390/ijms11031103. DOI: https://doi.org/10.3390/ijms11031103
Gong J., Sumathy K., Qiao Q., Zhou Z. (2017) Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews, 68 (Part 1), 234–246. DOI:10.1016/j.rser.2016.09.097. DOI: https://doi.org/10.1016/j.rser.2016.09.097
Nakamura S., Harada Y., Seno M. (1991) Novel metalorganic chemical vapor deposition system for GaN growth. Applied Physics Letters, 58(18), 2021–2023. DOI: 0.1063/1.105239. DOI: https://doi.org/10.1063/1.105239
Muñoz-García A.B., Benesperi I., Boschloo G., Concepcion J.J., Delcamp J.H., Gibson E.A., Meyer, Pavone M., Pettersson H., Hagfeldt A., Freitag M. (2021) Dye-sensitized solar cells strike back. Chemical Society Reviews, 50(22), 12450 – 12450. DOI: 10.1039/D0CS01336F. DOI: https://doi.org/10.1039/D0CS01336F
Tian G.L., He H.B., Shao J.D. (2005) Effect of microstructure of TiO2 thin films on optical band gap energy. Chinese Physics Letters, 22(7), 1787–1790. DOI: 10.1088/0256-307X/22/7/062. DOI: https://doi.org/10.1088/0256-307X/22/7/062
Serikov T.M., Ibrayev N.K., Nuraje N., Savilov S.V., Lunin V.V. (2017) Influence of surface properties of the titanium dioxide porous films on the characteristics of solar cells. Russian Chemical Bulletin, 66(4), 614–621. DOI:10.1007/s11172-017-1781-0. DOI: https://doi.org/10.1007/s11172-017-1781-0
Green M.L., Gusev E.P., Degraeve R., Garfunkel E.L. (2001) Ultrathin (<4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits. Journal of Applied Physics, 90(5), 2057–2121. DOI: 10.1063/1.1385803. DOI: https://doi.org/10.1063/1.1385803
Mukametkali T.M., Ilyassov B.R., Aimukhanov A.K., Serikov T.M., Baltabekov A.S., Aldasheva L.S., Zeinidenov A.K. (2023) Effect of the TiO2 electron transport layer thickness on charge transfer processes in perovskite solar cells. Physics B: Condensed Matter, 659, Article 414784. DOI: 10.1016/j.physb.2023.414784. DOI: https://doi.org/10.1016/j.physb.2023.414784
Gong J., Liang J., Sumathy K. (2012) Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 16(8), 5848–5860. DOI: 10.1016/j.rser.2012.04.044. DOI: https://doi.org/10.1016/j.rser.2012.04.044
Fong C.Y., Ng S.S., Yam F.K., Abu Hassan, H., Hassan Z. (2015) Growth of GaN on sputtered GaN buffer layer via low cost and simplified sol-gel spin coating method. Vacuum, 119, 119–122. DOI:10.1016/j.vacuum.2015.04.042. DOI: https://doi.org/10.1016/j.vacuum.2015.04.042
Liu H.L., Chen C.C., Chia C.T., Yeh C.C., Chen C.H., Yu M.Y., Keller S., DenBaars S.P. (2001) Infrared and Raman-scattering studies in single-crystalline GaN nanowires. Chemical Physics Letters, 345(3–4), 245–251. DOI:10.1016/S0009-2614(01)00858-2. DOI: https://doi.org/10.1016/S0009-2614(01)00858-2
Zhang M., Wang Y., Teng F., Chen L., Li J., Zhou J., et al. (2016) A photoelectrochemical type self-powered ultraviolet photodetector based on GaN porous films. Materials Letters, 162, 117–120. DOI:10.1016/j.matlet.2015.10.001. DOI: https://doi.org/10.1016/j.matlet.2015.10.001
Beechem T., Christensen A., Graham S., Green D. (2008) Micro-Raman thermometry in the presence of complex stresses in GaN devices. Journal of Applied Physics, 103(12), Article 121. DOI: 10.1063/1.2940131. DOI: https://doi.org/10.1063/1.2940131
Hassan Z., Lee Y.C., Yam F.K., Ibrahim K., Kordesch M.E., Halverson W., Colter P.C. (2005) Characteristics of low-temperature-grown GaN films on Si (111). Solid State Communications, 133(5), 283–287. DOI:10.1016/j.ssc.2004.11.022. DOI: https://doi.org/10.1016/j.ssc.2004.11.022
Dedkova A.A., Nikiforov M.O., Mitko S.V., Kireev V.Y. (2019) Investigation of gallium nitride island films on sapphire substrates via scanning electron microscopy and spectral ellipsometry. Nanotechnologies in Russia, 14(3–4), 176–183. DOI: 10.1134/S1995078019020046. DOI: https://doi.org/10.1134/S1995078019020046
Mosconi E., Yum J.H., Kessler F., Gómez García C.J., Zuccaccia C., Cinti A., Nazeeruddin M.K., Grätzel M., De Angelis F.(2012) Cobalt electrolyte/dye interactions in dye-sensitized solar cells: A combined computational and experimental study. Journal of the American Chemical Society, 134(47), 19438–19453. DOI: 10.1021/ja3079016. DOI: https://doi.org/10.1021/ja3079016
Lee Y.J., Lee M.H., Cheng C.M., Yang C.H. (2011) Enhanced conversion efficiency of InGaN multiple quanta well solar cells grown on a patterned sapphire substrate. Applied Physics Letters, 98(26), 1–4. DOI:10.1063/1.3585485. DOI: https://doi.org/10.1063/1.3605244
Hagfeldt A., Boschloo G., Sun L., Kloo L., Pettersson H. (2010) Dye-sensitized solar cells. Chemical Reviews, 110(11), 6595–663. DOI: 10.1021/cr900356p. DOI: https://doi.org/10.1021/cr900356p
Chiba Y., Islam A., Watanabe Y., Komiya R., Koide N., Han L. (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. Japanese Journal of Applied Physics, Part 2: Letters, 45(24–28), 23–26. DOI:10.1143/JJAP.45.L638. DOI: https://doi.org/10.1143/JJAP.45.L638
Lidow A., Strydom J., Strittmatter R., Zhou C. (2015) GaN: A reliable future in power conversion dramatic performance improvements at a lower cost. IEEE Power Electronics Magazine, 2(1), 20–26. DOI:10.1109/MPEL.2014.2381457. DOI: https://doi.org/10.1109/MPEL.2014.2381457
Robins L.H., Horneber E., Sanford N.A., Bertness K.A., Brubaker M.D., Schlager J.B. (2016) Raman spectroscopy, based measurements of carrier concentration in n-type GaN nanowires grown by plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 120(12), 1–10. DOI: 10.1063/1.4963291. DOI: https://doi.org/10.1063/1.4963291
Bagnall K.R., Moore E.A., Badescu S.C., Zhang L., Wang E.N. (2017) Simultaneous measurement of temperature, stress, and electric field in GaN HEMTs with micro-Raman spectroscopy. Review of Scientific Instruments, 88(11), 1–6. DOI: 10.1063/1.5010225. DOI: https://doi.org/10.1063/1.5010225
Downloads
Received
Revised
Accepted
Published online
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.












