Влияние концентрации наночастиц серебра на фотокаталитическую активность наностержней диоксида титана
DOI:
https://doi.org/10.31489/2023No4/39-45Ключевые слова:
наностержни, диоксид титана, наночастицы серебра, Ag, фотокатализАннотация
В данной работе представлены результаты исследования влияния концентрации наночастиц серебра в пленках из наностержней диоксида титана (TNR) на их фотокаталитическую активность. TNR со структурой рутила были получены методом гидротермального синтеза. Варируя количеством вещества соли переходного металла серебра (AgNO3), химическим восстановлением на поверхности TNR были получены наночастицы Ag с различной концентрацией. Исследования морфологий поверхности и ЭДА показали, что наночастицы Ag равномерно распределены и закреплены на поверхности TNR. Фотокаталитическая активность образцов оценивалась по величине генерируемого фототока с единицы поверхности пленок и фотодеградации красителя метиленовый голубой при освещении поверхности источником света ксеноновой лампы.
Библиографические ссылки
Ge M., Cao C., Huang J., et al. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A, 2016, Vol. 4., pp. 6772-6801. doi: 10.1039/C5TA09323F
Haider A.J., Jameel Z.N., Al-Hussaini I.M. Review on: titanium dioxide applications, Energy Procedia, 2019, Vol. 157, pp. 17-29. doi: 10.1016/j.egypro.2018.11.159
Allahverdiyev A.M., Abamor E.S., Bagirova M., et al. Antimicrobial effects of TiO2 and Ag2O nanoparticles againstdrug-resistant bacteria and leishmania parasites. Future Microbiology, 2011, Vol.6, pp. 933–940. doi:10.2217/fmb.11.78
Huang Z., Maness P.-C., Blake D. M. et al. Bactericidal mode of titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology A:Chemistry, 2000, Vol.130, pp. 163–170. doi: 10.1016/s1010-6030(99)00205-1
Serikov T.M., Ibrayev N. Kh., Savilov S.V., et al. T. M. Influence of the hydrothermal synthesis conditions on the photocatalytic activity of titanium dioxide nanorods. Russian journal of applied chemistry, 2021, Vol. 94, pp. 438 –445. doi: 10.1134/S1070427221040030
Serikov T.M., Ibrayev N. Kh., Isaykina O.Ya., et al. Nanocrystalline TiO2 films: synthesis, low-temperature luminescent and photovoltaic properties. Journal of Inorganic Chemistry, 2021, Vol. 66, pp. 107-114. doi: 10.1134/S0036023621010071
Fei Y.C., Ye X.F., Kang J.Y. Enhanced photocatalytic performance of TiO2 nanowires by substituting noble metal particles with reduced graphene oxide. Current appliedphysics, 2022, Vol.44, pp.33-39. doi: 10.1016/j.cap.2022.09.008
Mukametkalia T.M., Ilyassov B.R, Aimukhanov A.K., et al. Effect of the TiO2 electron transport layer thickness on charge transfer processes in perovskite solar cells. Physica B: Condensed Matter, 2023, Vol. 659, pp. 414784. doi: 10.1016/j.physb.2023.414784
Serikov T.M., Baltabekov A.S., Aidarova D.D., et al. Effect of anodizing voltage on the photocatalytic activity of films formed by titanium dioxide nanotubes. Eurasian Physical Technical Journal, 2022, Vol.19, pp.28 – 33. doi: 10.31489/2022No4/28-33
Liu Y, Zhou Y, Yang L, et al. Hydrothermal synthesis of 3Durchin-like Ag/TiO2/reduced graphene oxide compositesand its enhanced photocatalytic performance. J Nanopart Res, 2016, Vol.18, pp.283–295. doi: 10.1007/s11051-016-3596-6
Liang Y.T., Vijayan B.K., Gray K.A. et al. Minimizing graphene defects enhances titania nanocomposite-based photoca-talytic reduction of CO2 for improved solar fuel pro-duction. Nano Lett, 2011, Vol.11, pp.2865–2870. doi: 10.1021/nl2012906
Cozzoli P.D., Kornowski A., Weller H. Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods, Journal of the american chemical society, 2003, Vol.47, pp.14539-14548. doi: 10.1021/ja036505h
Xu J.M.,ChenD.F.,WuJ.F., et al. Nanowires-assembled TiO2 nanorods anchored on multilayer graphene for high-performance anodes of lithium-ion batteries. Nanomaterials, 2022, Vol.12, pp.3697. doi: 10.3390/nano12203697
Nada F. M., Saleem A.H., Shawki K.M. Hydrothermally growth of TiO2 nanorods, characterization and annealing temperature effect. Kuwait journal of science, 2021, Vol.48, pp.3-6. doi: 10.48129/kjs.v48i3.10417
Chakhtouna H., Benzeid H., Zari N. et al. Recent progress on Ag/TiO2 photocatalysts: photocatalytic and bactericidal behaviors. Enviromental scince and pollution research, 2021, Vol.33, pp. 44638–44666. doi: 10.1007/s11356-021-14996-y
Gupta B., Melvin A.A., Matthews T., et al. TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production. Renewable & sustainable energy reviews, 2016, Vol.58, pp. 1366–1375. doi: 10.1016/j.rser.2015.12.236
Molinari R., Lavorato C., Argurio P. The Evolution of Photocatalytic Membrane Reactors over the Last 20 Years: A State of the rt Perspective. Catalyst, 2021, Vol.11, pp. 775. doi: 10.3390/catal11070775
Stroyuk A.L., Kryukov A.I., Kuchmii S.Y. Semiconductor photocatalytic systems for the production of hydrogen by the action of visible light. Theoretical and experimental chemistry, 2009, Vol.45, No.4, pp.209–233. doi: 10.1007/s11237-009-9095-4
Karthikeyan C., Arunachalam P., Ramachandran K. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. Journal of alloys and compounds, 2020, Vol.828, pp.154281. doi: 10.1016/j.jallcom.2020.154281
Dhinesh K.R., Thangappan R. R. Synthesis and characterization of LaFeO3/TiO2 nanocomposites for visible light photocatalytic activity. Journal of Physical and Chemistry of Solids, 2016, Vol. 23, pp. PCS7876. doi: 10.1016/j.jpcs.2016.10.005
Fu L., Zheng Y., Fu Z., et al. Synthesis of Ag decorated gra-phene-hierarchical TiO2 nanocomposite with enhanced photocatalytic activity. Funct Mater Lett, 2015, Vol.8, pp. 1550036–1550039. doi: 10.1142/S1793604715500368
Samir M., Geioushy R.A., El-Sherbiny S., et al. Enhancing the anti-ageing, antimicrobial activity and mechanical properties of surface-coated paper by Ag@TiO2-modified nanopigments, Environmental science and pollution research, 2022, Vol.29, pp. 72515-72527. doi: 10.1007/s11356-022-20935-2
Ke C.R., Guo J.S., Su Y.H., et al. The effect of silver nanopar-ticles/graphene-coupled TiO2 beads photocatalyst on the photoconversion efficiency of photoelectrochemical hydrogen production. Nanotechnology, 2016, Vol.27, pp. 435405–435412. doi: 10.1088/0957-4484/27/43/435405
Paul K.K., Giri P.K. Role of Surface plasmons and hot electrons on the multi-step photocatalytic decay by defect enriched Ag@TiO2 nanorods under visible light. Journal ofphysicalchemistry C, 2017, Vol.36, pp.20016-20030. doi: 10.1021/acs.jpcc.7b05328
Serikov T.M., Kayumova A.S., Baltabekov A.S. et al. Photocatalytic activity of nanocomposites based on titania nanorods and nanotubes doped with Ag and reduced graphene oxide nanoparticles. Nanobiotechnology Reports, 2023, Vol. 18, pp. 207–215. doi: 10.1134/S2635167623700040
Adachi M., Sakamoto M., Jiu J., et al. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem.B, 2006, Vol. 110, pp. 13872. doi: 10.1021/jp061693u
Wodka D., Bielańska E., Socha R.P., et al. Photocatalytic activity of titanium dioxide modified by silver nanoparticles. ACS Applied Materials & Interfaces, 2010, Vol. 2, pp.1945–1953. doi: 10.1021/am1002684