SYNTHESIS AND CHARACTERIZATION OF HYDROXYAPATITE UNDER INFLUENCE OF ULTRAVIOLET RADIATION AND ULTRASONIC EXPOSURE
DOI:
https://doi.org/10.31489/2024No3/54-62Keywords:
hydroxyapatite, wet precipitation, ultrasound, ultraviolet radiationAbstract
Hydroxyapatite has a wide range of possible applications in biomedicine, optics and electronics, sensors, catalysis and in environmental decontamination. The present study focused on the synthesis of hydroxyapatite by the wet precipitation method. The influence of drying time on the properties of synthesized material was investigated. The particle size increases from 80 to 200 µm by increasing the drying time from 24 hours to 96 hours. The morphology and properties of hydroxyapatite powders obtained under the action of the ultraviolet radiation and ultrasonic exposure acting together and individually was studied. The obtained samples were analyzed using X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope, Brunauer–Emmett–Teller methods. The results showed that the properties of the obtained hydroxyapatite powders were highly dependent on the synthesis conditions. Ultrasonic treatment at the synthesis stage led to a decrease in the size of the resulting hydroxyapatite particles to 4 µm. The use of ultraviolet radiation at the stabilization stage led to an increase in the content of hydroxyapatite in the reaction products.
References
LeGeros R.Z., LeGeros J.P. Hydroxyapatite. (2008) Bioceramics and their Clinical Applications. Woodhead Publishing. 367 – 394. DOI: 10.1533/9781845694227.2.367. DOI: https://doi.org/10.1533/9781845694227.2.367
Rial R., González-Durruthy M., Liu Z., Ruso J.M. (2021) Advanced materials based on nanosized hydroxyapatite. Molecules, 26, 3190. DOI: 10.3390/molecules26113190. DOI: https://doi.org/10.3390/molecules26113190
Dorozhkin S.V. (2022) Calcium orthophosphate (CaPO4)-based bioceramics: preparation, properties, and applications. Coating, 12, 1380. DOI: 10.3390/coatings12101380. DOI: https://doi.org/10.3390/coatings12101380
Das A., Pamu D. (2019) A comprehensive review on electrical properties of hydroxyapatite based ceramic composites. Materials Science and Engineering: C, 101, 539–563. DOI: 10.1016/j.msec.2019.03.077. DOI: https://doi.org/10.1016/j.msec.2019.03.077
Corno M., Busco C., Civalleri B., Ugliengo P. (2006) Periodic ab initio study of structural and vibrational features of hexagonal hydroxyapatite Ca10(PO4)6(OH)2. Physical Chemistry Chemical Physics, 8, 2464–2472. DOI:10.1039/B602419J. DOI: https://doi.org/10.1039/b602419j
Bystrov V., Paramonova E., Avakyan L., Coutinho J., Bulina N. (2021) Simulation and computer study of structures and physical properties of hydroxyapatite with various defects. Nanomaterials, 11, 2752. DOI:10.3390/nano11102752. DOI: https://doi.org/10.3390/nano11102752
Yang Z., Zhou S., Zu J., Inman D. (2018) High-performance piezoelectric energy harvesters and their applications. Joule, 2(4), 642–697. DOI:10.1016/j.joule.2018.03.011. DOI: https://doi.org/10.1016/j.joule.2018.03.011
Aabid A., Raheman M.A., Ibrahim Y.E., et al. (2021) A systematic review of piezoelectric materials and energy harvesters for industrial applications. Sensors, 21, 4145. DOI: 10.3390/s21124145. DOI: https://doi.org/10.3390/s21124145
Xu Z., Li C., Wang N., Ding Y., Yan Z., Li Q. (2024) Functional graphitic carbon nitride/hydroxyapatite heterojunction for robust formaldehyde removal at ambient temperature. Journal of Environmental Chemical Engineering, 12(1), 111679. DOI: 10.1016/j.jece.2023.111679. DOI: https://doi.org/10.1016/j.jece.2023.111679
Lan Y.-T., Yang X.-Y., Liu S.-X., Miao Y.-X., Zhao Z. (2022) Highly dispersed silver nanoparticles supported on a hydroxyapatite catalyst with different morphologies for CO oxidation. New Journal of Chemistry, 46, 6940–6945. DOI: 10.1039/D2NJ00464J. DOI: https://doi.org/10.1039/D2NJ00464J
Wang Y., Zhou X., Wei X., et al. (2021) Co/hydroxyapatite catalysts for N2O catalytic decomposition: design of well-defined active sites with geometrical and spacing effects. Molecular Catalysis, 501, 111370. DOI:10.1016/j.mcat.2020.111370. DOI: https://doi.org/10.1016/j.mcat.2020.111370
Guo J., Duchesne P.N., Wang L., et al. (2020) High-performance, scalable, and low-cost copper hydroxyapatite for photothermal CO2 reduction. ACS Catalysis, 10, 13668–13681. DOI: 10.1021/acscatal.0c03806. DOI: https://doi.org/10.1021/acscatal.0c03806
Yamada H., Tamura K., Watanabe Y., Iyi N., Morimoto K. (2011) Geomaterials: their application to environmental remediation. Science and Technology of Advanced Materials, 12, 064705. DOI: 10.1088/1468-6996/12/6/064705. DOI: https://doi.org/10.1088/1468-6996/12/6/064705
Javadinejad H.R., Ebrahimi-Kahrizsangi R. (2021) Thermal and kinetic study of hydroxyapatite formation by solid-state reaction. International Journal of Chemical Kinetics, 53, 583–595. DOI: 10.1002/kin.21467. DOI: https://doi.org/10.1002/kin.21467
Mobasherpour I., Soulati Heshajin M., Kazemzadeh A., Zakeri M. (2007) Synthesis of nanocrystalline hydroxyapatite by using precipitation method. Journal of Alloys and Compounds, 430, 330–333. DOI:10.1016/j.jallcom.2006.05.018. DOI: https://doi.org/10.1016/j.jallcom.2006.05.018
Bilton M., Milne S.J., Brown A.P. (2012) Comparison of hydrothermal and sol-gel synthesis of nano-particulate hydroxyapatite by characterization at the bulk and particle level. Open Journal of Inorganic Non-metallic Materials, 2, 1–10. DOI: 10.4236/ojinm.2012.21001. DOI: https://doi.org/10.4236/ojinm.2012.21001
Yang Y., Ong J.L., Tian J. (2002) Rapid sintering of hydroxyapatite by microwave processing. Journal of Materials Science Letters, 21, 67–69. DOI: 10.1023/A:1014250813564. DOI: https://doi.org/10.1023/A:1014250813564
Shaban N.Z., Kenawy M.Y., Taha N.A., Abd El-Latif M.M., Ghareeb D.A. (2021) Synthesized nanorods hydroxyapatite by microwave-assisted technology for in vitro osteoporotic bone regeneration through Wnt/β-catenin pathway. Materials, 14, 5823. DOI: 10.3390/ma14195823. DOI: https://doi.org/10.3390/ma14195823
Mohd Pu'ad N.A.S., Abdul Haq R.H., Mohd Noh H., Abdullah H.Z., Idris M.I., Lee T.C. (2020) Synthesis method of hydroxyapatite: a review. Materials Today: Proceedings, 29(1), 233–239. DOI:10.1016/j.matpr.2020.05.536. DOI: https://doi.org/10.1016/j.matpr.2020.05.536
Sultana S., Hossain M.S., Mahmud M., et al. (2021) UV-assisted synthesis of hydroxyapatite from eggshells at ambient temperature: cytotoxicity, drug delivery and bioactivity. RSC Advances, 11(6), 3686–3694. DOI:10.1039/D0RA09673C. DOI: https://doi.org/10.1039/D0RA09673C
Leonov A., Usacheva T., Lyapunov D., Voronina N., Galtseva O., Rogachev A. (2021) Improving the heat resistance of polymer electrical insulation systems for the modernization of induction motors. Eurasian Physical Technical Journal, 18(1) (35), 34–42. DOI: 10.31489/2021No1/34-42. DOI: https://doi.org/10.31489/2021No1/34-42
Poinern G.E., Brundavanam R.K., Mondinos N., Jiang Z.T. (2009) Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method. Ultrasonics Sonochemistry, 16(4), 469–474. DOI:10.1016/j.ultsonch.2009.01.007. DOI: https://doi.org/10.1016/j.ultsonch.2009.01.007
Rouhani P., Taghavinia N., Rouhani S. (2010) Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation. Ultrasonics Sonochemistry, 17(5), 853–856. DOI:10.1016/j.ultsonch.2010.01.010. DOI: https://doi.org/10.1016/j.ultsonch.2010.01.010
Bouyer E., Gitzhofer F., Boulos M.I. (2000) Morphological study of hydroxyapatite nanocrystal suspension, Journal of Materials Science: Materials in Medicine, 11(8), 523–531. DOI: 10.1023/A:1008918110156. DOI: https://doi.org/10.1023/A:1008918110156
Agbeboh N.I., Oladele I.O., Daramola O.O., Adediran A.A., Olasukanmi O.O., Tanimola M.O. (2020) Environmentally sustainable processes for the synthesis of hydroxyapatite. Heliyon, 6(4), e03765. DOI:10.1016/j.heliyon.2020.e03765. DOI: https://doi.org/10.1016/j.heliyon.2020.e03765
Sing K.S.W. (1998) Adsorption methods for the characterization of porous materials. Advances in Colloid and Interface Science, 76–77, 3–11. DOI:10.1016/S0001-8686(98)00038-4. DOI: https://doi.org/10.1016/S0001-8686(98)00038-4
Kannan S., Lemos A.F., Ferreira J.M.F. (2006) Synthesis and mechanical performance of biological-like hydroxyapatites. Chemistry of Materials, 18(8), 2181–2186. DOI:10.1021/cm052567q. DOI: https://doi.org/10.1021/cm052567q
Szterner P., Biernat M. (2022) The synthesis of hydroxyapatite by hydrothermal process with calcium lactate pentahydrate: the effect of reagent concentrations, pH, temperature, and pressure. Bioinorganic Chemistry and Applications, 3481677. DOI: 10.1155/2022/3481677. DOI: https://doi.org/10.1155/2022/3481677
Wang Y.J., Chen J.D., Wei K., Zhang S.H., Wang X.D. (2006) Surfactant-assisted synthesis of hydroxyapatite particles. Materials Letters, 60(27), 3227–3231. DOI: 10.1016/j.matlet.2006.02.077. DOI: https://doi.org/10.1016/j.matlet.2006.02.077
Safavi M.S., Walsh F.C., Surmeneva M.A., Surmenev R.A., Khalil-Allafi J. (2021) Electrodeposited hydroxyapatite-based biocoatings: Recent progress and future challenges. Coatings, 11, 110. DOI:10.3390/coatings11010110. DOI: https://doi.org/10.3390/coatings11010110
Downloads
Received
Revised
Accepted
Published online
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.












