SYNTHESIS AND CHARACTERIZATION OF HYDROXYAPATITE UNDER INFLUENCE OF ULTRAVIOLET RADIATION AND ULTRASONIC EXPOSURE

SYNTHESIS AND CHARACTERIZATION OF HYDROXYAPATITE UNDER INFLUENCE OF ULTRAVIOLET RADIATION AND ULTRASONIC EXPOSURE

Authors

DOI:

https://doi.org/10.31489/2024No3/54-62

Keywords:

hydroxyapatite, wet precipitation, ultrasound, ultraviolet radiation

Abstract

Hydroxyapatite has a wide range of possible applications in biomedicine, optics and electronics, sensors, catalysis and in environmental decontamination. The present study focused on the synthesis of hydroxyapatite by the wet precipitation method. The influence of drying time on the properties of synthesized material was investigated. The particle size increases from 80 to 200 µm by increasing the drying time from 24 hours to 96 hours. The morphology and properties of hydroxyapatite powders obtained under the action of the ultraviolet radiation and ultrasonic exposure acting together and individually was studied. The obtained samples were analyzed using X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope, Brunauer–Emmett–Teller methods. The results showed that the properties of the obtained hydroxyapatite powders were highly dependent on the synthesis conditions. Ultrasonic treatment at the synthesis stage led to a decrease in the size of the resulting hydroxyapatite particles to 4 µm. The use of ultraviolet radiation at the stabilization stage led to an increase in the content of hydroxyapatite in the reaction products.

Author's detail

A.V. Mostovshchikov

Mostovshchikov, Andrei Vladimirovich – Doctor of Technical Sciences, Associate Professor, Professor, School of Earth Sciences and Engineering, Tomsk Polytechnic University; Professor, Department of Physical Electronics, Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia; Scopus Author ID: 15019762000; ORCID ID: 0000-0001-6401-9243; avmost@tpu.ru

M.E. Grebnev

Grebnev, Mark Ernestovich – Master's Student, School of Nuclear Science & Engineering, Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia; ORCID ID: 0009-0003-0937-5298; mark18091@gmail.com

M.A. Rudmin

Rudmin, Maxim Andreevich – Candidate of Geological and Mineralogical Sciences, Associate Professor, Division for Geology, School of Earth Sciences and Engineering, Tomsk polytechnic university, Tomsk, Russia; Scopus Author ID: 56350797200; ORCID ID: 0000-0002-9004-9929; rudminma@tpu.ru  

O.B. Nazarenko

Nazarenko, Olga Bronislavovna – Doctor of Technical Sciences, Professor, Division of Testing and Diagnostics, NDT School, Tomsk polytechnic university, Tomsk, Russia; Scopus Author ID: 57193908313; ORCID ID: 0000-0003-3245-3584; olganaz@tpu.ru

K.V. Derina

Derina, Ksenia Vladimirovna – Candidate of Technical Sciences, Associate Professor, Division of Chemical Engineering, School of Earth Sciences and Engineering, Tomsk Polytechnic University, Tomsk, Russia; Scopus Author ID: 57195258640; ORCID ID: 0000-0003-1663-4019; derinakv@tpu.ru 

O.V. Galtseva

Galtseva, Olga Valerievna – Candidate of Technical Sciences, Associate Professor, Division of Testing and Diagnostics, NDT School, Tomsk Polytechnic University; Associate Professor, Department of Innovation Management, Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia; Scopus Author ID: 15049236900; ORCID ID: 0000-0001-6919-4833; tpuolga@tpu.ru  

References

LeGeros R.Z., LeGeros J.P. Hydroxyapatite. (2008) Bioceramics and their Clinical Applications. Woodhead Publishing. 367 – 394. DOI: 10.1533/9781845694227.2.367. DOI: https://doi.org/10.1533/9781845694227.2.367

Rial R., González-Durruthy M., Liu Z., Ruso J.M. (2021) Advanced materials based on nanosized hydroxyapatite. Molecules, 26, 3190. DOI: 10.3390/molecules26113190. DOI: https://doi.org/10.3390/molecules26113190

Dorozhkin S.V. (2022) Calcium orthophosphate (CaPO4)-based bioceramics: preparation, properties, and applications. Coating, 12, 1380. DOI: 10.3390/coatings12101380. DOI: https://doi.org/10.3390/coatings12101380

Das A., Pamu D. (2019) A comprehensive review on electrical properties of hydroxyapatite based ceramic composites. Materials Science and Engineering: C, 101, 539–563. DOI: 10.1016/j.msec.2019.03.077. DOI: https://doi.org/10.1016/j.msec.2019.03.077

Corno M., Busco C., Civalleri B., Ugliengo P. (2006) Periodic ab initio study of structural and vibrational features of hexagonal hydroxyapatite Ca10(PO4)6(OH)2. Physical Chemistry Chemical Physics, 8, 2464–2472. DOI:10.1039/B602419J. DOI: https://doi.org/10.1039/b602419j

Bystrov V., Paramonova E., Avakyan L., Coutinho J., Bulina N. (2021) Simulation and computer study of structures and physical properties of hydroxyapatite with various defects. Nanomaterials, 11, 2752. DOI:10.3390/nano11102752. DOI: https://doi.org/10.3390/nano11102752

Yang Z., Zhou S., Zu J., Inman D. (2018) High-performance piezoelectric energy harvesters and their applications. Joule, 2(4), 642–697. DOI:10.1016/j.joule.2018.03.011. DOI: https://doi.org/10.1016/j.joule.2018.03.011

Aabid A., Raheman M.A., Ibrahim Y.E., et al. (2021) A systematic review of piezoelectric materials and energy harvesters for industrial applications. Sensors, 21, 4145. DOI: 10.3390/s21124145. DOI: https://doi.org/10.3390/s21124145

Xu Z., Li C., Wang N., Ding Y., Yan Z., Li Q. (2024) Functional graphitic carbon nitride/hydroxyapatite heterojunction for robust formaldehyde removal at ambient temperature. Journal of Environmental Chemical Engineering, 12(1), 111679. DOI: 10.1016/j.jece.2023.111679. DOI: https://doi.org/10.1016/j.jece.2023.111679

Lan Y.-T., Yang X.-Y., Liu S.-X., Miao Y.-X., Zhao Z. (2022) Highly dispersed silver nanoparticles supported on a hydroxyapatite catalyst with different morphologies for CO oxidation. New Journal of Chemistry, 46, 6940–6945. DOI: 10.1039/D2NJ00464J. DOI: https://doi.org/10.1039/D2NJ00464J

Wang Y., Zhou X., Wei X., et al. (2021) Co/hydroxyapatite catalysts for N2O catalytic decomposition: design of well-defined active sites with geometrical and spacing effects. Molecular Catalysis, 501, 111370. DOI:10.1016/j.mcat.2020.111370. DOI: https://doi.org/10.1016/j.mcat.2020.111370

Guo J., Duchesne P.N., Wang L., et al. (2020) High-performance, scalable, and low-cost copper hydroxyapatite for photothermal CO2 reduction. ACS Catalysis, 10, 13668–13681. DOI: 10.1021/acscatal.0c03806. DOI: https://doi.org/10.1021/acscatal.0c03806

Yamada H., Tamura K., Watanabe Y., Iyi N., Morimoto K. (2011) Geomaterials: their application to environmental remediation. Science and Technology of Advanced Materials, 12, 064705. DOI: 10.1088/1468-6996/12/6/064705. DOI: https://doi.org/10.1088/1468-6996/12/6/064705

Javadinejad H.R., Ebrahimi-Kahrizsangi R. (2021) Thermal and kinetic study of hydroxyapatite formation by solid-state reaction. International Journal of Chemical Kinetics, 53, 583–595. DOI: 10.1002/kin.21467. DOI: https://doi.org/10.1002/kin.21467

Mobasherpour I., Soulati Heshajin M., Kazemzadeh A., Zakeri M. (2007) Synthesis of nanocrystalline hydroxyapatite by using precipitation method. Journal of Alloys and Compounds, 430, 330–333. DOI:10.1016/j.jallcom.2006.05.018. DOI: https://doi.org/10.1016/j.jallcom.2006.05.018

Bilton M., Milne S.J., Brown A.P. (2012) Comparison of hydrothermal and sol-gel synthesis of nano-particulate hydroxyapatite by characterization at the bulk and particle level. Open Journal of Inorganic Non-metallic Materials, 2, 1–10. DOI: 10.4236/ojinm.2012.21001. DOI: https://doi.org/10.4236/ojinm.2012.21001

Yang Y., Ong J.L., Tian J. (2002) Rapid sintering of hydroxyapatite by microwave processing. Journal of Materials Science Letters, 21, 67–69. DOI: 10.1023/A:1014250813564. DOI: https://doi.org/10.1023/A:1014250813564

Shaban N.Z., Kenawy M.Y., Taha N.A., Abd El-Latif M.M., Ghareeb D.A. (2021) Synthesized nanorods hydroxyapatite by microwave-assisted technology for in vitro osteoporotic bone regeneration through Wnt/β-catenin pathway. Materials, 14, 5823. DOI: 10.3390/ma14195823. DOI: https://doi.org/10.3390/ma14195823

Mohd Pu'ad N.A.S., Abdul Haq R.H., Mohd Noh H., Abdullah H.Z., Idris M.I., Lee T.C. (2020) Synthesis method of hydroxyapatite: a review. Materials Today: Proceedings, 29(1), 233–239. DOI:10.1016/j.matpr.2020.05.536. DOI: https://doi.org/10.1016/j.matpr.2020.05.536

Sultana S., Hossain M.S., Mahmud M., et al. (2021) UV-assisted synthesis of hydroxyapatite from eggshells at ambient temperature: cytotoxicity, drug delivery and bioactivity. RSC Advances, 11(6), 3686–3694. DOI:10.1039/D0RA09673C. DOI: https://doi.org/10.1039/D0RA09673C

Leonov A., Usacheva T., Lyapunov D., Voronina N., Galtseva O., Rogachev A. (2021) Improving the heat resistance of polymer electrical insulation systems for the modernization of induction motors. Eurasian Physical Technical Journal, 18(1) (35), 34–42. DOI: 10.31489/2021No1/34-42. DOI: https://doi.org/10.31489/2021No1/34-42

Poinern G.E., Brundavanam R.K., Mondinos N., Jiang Z.T. (2009) Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method. Ultrasonics Sonochemistry, 16(4), 469–474. DOI:10.1016/j.ultsonch.2009.01.007. DOI: https://doi.org/10.1016/j.ultsonch.2009.01.007

Rouhani P., Taghavinia N., Rouhani S. (2010) Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation. Ultrasonics Sonochemistry, 17(5), 853–856. DOI:10.1016/j.ultsonch.2010.01.010. DOI: https://doi.org/10.1016/j.ultsonch.2010.01.010

Bouyer E., Gitzhofer F., Boulos M.I. (2000) Morphological study of hydroxyapatite nanocrystal suspension, Journal of Materials Science: Materials in Medicine, 11(8), 523–531. DOI: 10.1023/A:1008918110156. DOI: https://doi.org/10.1023/A:1008918110156

Agbeboh N.I., Oladele I.O., Daramola O.O., Adediran A.A., Olasukanmi O.O., Tanimola M.O. (2020) Environmentally sustainable processes for the synthesis of hydroxyapatite. Heliyon, 6(4), e03765. DOI:10.1016/j.heliyon.2020.e03765. DOI: https://doi.org/10.1016/j.heliyon.2020.e03765

Sing K.S.W. (1998) Adsorption methods for the characterization of porous materials. Advances in Colloid and Interface Science, 76–77, 3–11. DOI:10.1016/S0001-8686(98)00038-4. DOI: https://doi.org/10.1016/S0001-8686(98)00038-4

Kannan S., Lemos A.F., Ferreira J.M.F. (2006) Synthesis and mechanical performance of biological-like hydroxyapatites. Chemistry of Materials, 18(8), 2181–2186. DOI:10.1021/cm052567q. DOI: https://doi.org/10.1021/cm052567q

Szterner P., Biernat M. (2022) The synthesis of hydroxyapatite by hydrothermal process with calcium lactate pentahydrate: the effect of reagent concentrations, pH, temperature, and pressure. Bioinorganic Chemistry and Applications, 3481677. DOI: 10.1155/2022/3481677. DOI: https://doi.org/10.1155/2022/3481677

Wang Y.J., Chen J.D., Wei K., Zhang S.H., Wang X.D. (2006) Surfactant-assisted synthesis of hydroxyapatite particles. Materials Letters, 60(27), 3227–3231. DOI: 10.1016/j.matlet.2006.02.077. DOI: https://doi.org/10.1016/j.matlet.2006.02.077

Safavi M.S., Walsh F.C., Surmeneva M.A., Surmenev R.A., Khalil-Allafi J. (2021) Electrodeposited hydroxyapatite-based biocoatings: Recent progress and future challenges. Coatings, 11, 110. DOI:10.3390/coatings11010110. DOI: https://doi.org/10.3390/coatings11010110

Downloads

Received

2024-03-22

Revised

2024-07-03

Accepted

2024-09-20

Published online

2024-09-30

How to Cite

Mostovshchikov, A., Grebnev, M., Rudmin, M., Nazarenko, O., Derina, K., & Galtseva, O. (2024). SYNTHESIS AND CHARACTERIZATION OF HYDROXYAPATITE UNDER INFLUENCE OF ULTRAVIOLET RADIATION AND ULTRASONIC EXPOSURE. Eurasian Physical Technical Journal, 21(3(49), 54–62. https://doi.org/10.31489/2024No3/54-62

Issue

Section

Engineering

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.

Loading...