Теоретическое исследование электронных и структурных свойств N-(2-OXO-2H-CHROMEN-3-CARBONYL) цитизина.

Теоретическое исследование электронных и структурных свойств N-(2-OXO-2H-CHROMEN-3-CARBONYL) цитизина.

Авторы

DOI:

https://doi.org/10.31489/2025N4/39-45

Ключевые слова:

цитизин, кумарин, комплекс, теория функционала плотности, УФ-видимая спектроскопия, люминесцентная спектроскопия.

Аннотация

Новые соединения на основе цитизина и кумарина представляют интерес для фармацевтической промышленности в связи с их перспективной биологической активностью. Последняя, в свою очередь, тесно связана с структурой вещества, что проявляется в специфических электронных свойствах. В данной работе представлены результаты теоретических исследований электронных и структурных свойств недавно синтезированного N-(2-oxo-2H-chromen-3-carbonyl)cytisine. Установлена молекулярная структура основного и первого возбужденного состояния. Рассмотрены их структурные особенности с учетом конформационного разнообразия. Проведен расчет вероятностей вертикальных электронных переходов, определяющих интенсивности полос в спектрах поглощенич и эмиссии. Полученные теоретические результаты сопоставлены с измеренными спектрами поглощения и люминесценции этанольных растворов.

Библиографические ссылки

Tian G., Zhang Z., Li H., Li D., Wang X., Qin C. (2020) Design, Synthesis and Application in Analytical Chemistry of Photo-Sensitive Probes Based on Coumarin. Critical Reviews in Analytical Chemistry, 51, 565–581. https://doi.org/10.1080/10408347.2020.1753163

Wang L., Li W., Zhi W., Ye D., Wang Y., Ni L., Bao X. (2017) A Rapid-Responsive Fluorescent Probe Based on Coumarin for Selective Sensing of Sulfite in Aqueous Solution and Its Bioimaging by Turn-on Fluorescence Signal. Dyes and Pigments, 147, 357–363. https://doi.org/10.1016/j.dyepig.2017.07.021 DOI: https://doi.org/10.1016/j.dyepig.2017.07.021

Li J., Zhang C.-F., Yang S.-H., Yang W.-C., Yang G.-F. (2014) A Coumarin-Based Fluorescent Probe for Selective and Sensitive Detection of Thiophenols and Its Application. Analytical Chemistry, 86, 3037–3042. https://doi.org/10.1021/ac403885n DOI: https://doi.org/10.1021/ac403885n

Ray D., Bharadwaj P.K. (2008) A Coumarin-Derived Fluorescence Probe Selective for Magnesium. Inorganic Chemistry, 47, 2252–2254. https://doi.org/10.1021/ic702388z DOI: https://doi.org/10.1021/ic702388z

Kenchappa R., Bodke Y.D., Chandrashekar A., Aruna Sindhe M., Peethambar S.K. (2017) Synthesis of Coumarin Derivatives Containing Pyrazole and Indenone Rings as Potent Antioxidant and Antihyperglycemic Agents. Arabian Journal of Chemistry, 10, S3895–S3906. https://doi.org/10.1016/j.arabjc.2014.05.029 DOI: https://doi.org/10.1016/j.arabjc.2014.05.029

Annunziata F., Pinna C., Dallavalle S., Tamborini L., Pinto A. (2020) An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. International Journal of Molecular Sciences, 21, 4618. https://doi.org/10.3390/ijms21134618 DOI: https://doi.org/10.3390/ijms21134618

Alam M., Alam M.J., Azaz S., Parveen M., Park S., Ahmad S. (2018) DFT/TD-DFT Calculations, Spectroscopic Characterizations (FTIR, NMR, UV–Vis), Molecular Docking and Enzyme Inhibition Study of 7-Benzoyloxycoumarin. Computational Biology and Chemistry, 73, 65–78. https://doi.org/10.1016/j.compbiolchem.2018.01.007 DOI: https://doi.org/10.1016/j.compbiolchem.2018.01.007

Srikrishna D., Godugu C., Dubey P.K. (2018) A Review on Pharmacological Properties of Coumarins. Mini-Reviews in Medicinal Chemistry, 18, 113–141. https://doi.org/10.2174/1389557516666160801094919 DOI: https://doi.org/10.2174/1389557516666160801094919

Przybył A.K., Maj E., Wietrzyk J., Kubicki M. (2019) Spectroscopic, Structural and Anticancer Activity Studies of (−)-Cytisine Halogenated N-Benzyl Derivatives. Journal of Molecular Structure, 1176, 871–880. https://doi.org/10.1016/j.molstruc.2018.09.029 DOI: https://doi.org/10.1016/j.molstruc.2018.09.029

Pankin D. (2021) Laser-Induced Twisting of Phosphorus Functionalized Thiazolotriazole as a Way of Cholinesterase Activity Change. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 246, 118979. https://doi.org/10.1016/j.saa.2020.118979 DOI: https://doi.org/10.1016/j.saa.2020.118979

Kopbalina K.B., Makhmutova A.S., Turdybekov D.M., Turdybekov K.M., Tolenova G.K. (2025) Quantum-Chemical Study of the Structure and Properties of Molecule of the Lupinine Alkaloid Derivative. Bulletin of the Karaganda University. Physics Series, 105(1), 14–22. https://doi.org/10.31489/2023No4/33-38 DOI: https://doi.org/10.31489/2025ph1/6-12

He L., Xu Q., Liu Y., Wei H., Tang Y., Lin W. (2015) Coumarin-Based Turn-On Fluorescence Probe for Specific Detection of Glutathione over Cysteine and Homocysteine. ACS Applied Materials & Interfaces, 7, 12809–12813. https://doi.org/10.1021/acsami.5b01934 DOI: https://doi.org/10.1021/acsami.5b01934

Kishkentayeva A., Kopbalina K., Shaimerdenova Z., Shults E., Gatilov Y., Pankin D., Smirnov M., Povolotckaia A., Turdybekov D., Mazhenov N. (2025) Investigation of N-(2-oxo-2H-chromen-3-carbonyl)cytisine’s Crystal Structure and Optical Properties. Materials, 18, 3153. https://doi.org/10.3390/ma18133153 DOI: https://doi.org/10.3390/ma18133153

Kopbalina K., Adekenova A., Shaimerdenova Zh., Kairatova Zh., Shakarimova K., Pankin D., Smirnov M., Kishkentayeva A., Artykbayeva M., Jalmakhanbetova R. (2025) Investigation of N-(2-oxo-2H-chromen-3-carbonyl)cytisine’s Molecular Structure in Solution. Molecules, 30(20), 4139. https://doi.org/10.3390/molecules30204139 DOI: https://doi.org/10.3390/molecules30204139

Gawad S.A.A., Sakr M.A.S. (2022) Spectroscopic Investigation, DFT and TD-DFT Calculations of 7-(Diethylamino) Coumarin (C466) J. Mol. Struct. 1248, 131413. https://doi.org/10.1016/j.molstruc.2021.131413 DOI: https://doi.org/10.1016/j.molstruc.2021.131413

Tian G., Zhang Z., Li H., Li D., Wang X., Qin C. (2020) Design, Synthesis and Application in Analytical Chemistry of Photo-Sensitive Probes Based on Coumarin. Crit. Rev. Anal. Chem. 51, 565–581. https://doi.org/10.1080/10408347.2020.1753163 DOI: https://doi.org/10.1080/10408347.2020.1753163

Chai J., Head-Gordon M. (2008) Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Physical Chemistry Chemical Physics, 10, 6615–6620. https://doi.org/10.1039/b810189b DOI: https://doi.org/10.1039/b810189b

Ditchfield R., Hehre W.J., Pople J.A. (1971) Self-Consistent Molecular Orbital Methods. 9. Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. Journal of Chemical Physics, 54, 724. https://doi.org/10.1063/1.1674902 DOI: https://doi.org/10.1063/1.1674902

Hehre W.J., Ditchfield R., Pople J.A. (1972) Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular-Orbital Studies of Organic Molecules. Journal of Chemical Physics, 56, 2257. https://doi.org//10.1063/1.1677527 DOI: https://doi.org/10.1063/1.1677527

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. (2013) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT. Available at: https://www.scirp.org/reference/referencespapers?referenceid=2418053

Tomasi J., Mennucci B., Cammi R. (2005) Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 105, 2999–3093. https://doi.org/10.1021/cr9904009 DOI: https://doi.org/10.1021/cr9904009

Kopbalina K.B., Makhmutova A.S., Turdybekov D.M., Turdybekov K.M., Tolenova G.K. (2024) Quantum-Chemical Study of the Structure and Properties of Molecule of the Lupinine Alkaloid Derivative. Eurasian Physical Technical Journal, 4(46), 33-38. https://doi.org/10.31489/2023No4/33-38 DOI: https://doi.org/10.31489/2023No4/33-38

Ibrayev N.Kh., Valiev R.R., Seliverstova E.V., Menshova E.P., Nasibullin R.T., Sundholm D. (2024) Molecular phosphorescence enhancement by the plasmon field of metal nanoparticles. Physical Chemistry Chemical Physics, 26, 14624-1436. https://doi.org/10.1039/d4cp01281j DOI: https://doi.org/10.1039/D4CP01281J

Sun X.Y., Liu T., Sun J., Wang X.J. (2020). Synthesis and application of coumarin fluorescence probes. RSC advances, 10(18), 10826-10847. https://doi.org/10.1039/C9RA10290F DOI: https://doi.org/10.1039/C9RA10290F

Xu Y., Jiang Z., Xiao Y., Bi F.Z., Miao J.Y., Zhao B.X. (2014). A new fluorescent pH probe for extremely acidic conditions. Analytica chimica acta, 820, 146-151. https://doi.org/10.1016/j.aca.2014.02.029 DOI: https://doi.org/10.1016/j.aca.2014.02.029

Chen Y., Clouthier C.M., Tsao K., Strmiskova M., Lachance H., Keillor J.W. (2014). Coumarin-Based Fluorogenic Probes for No-Wash Protein Labeling, Angew. Chem. Int. Ed., 53, 13785–13788. https://doi.org/10.1002/anie.201408015 DOI: https://doi.org/10.1002/anie.201408015

You Q.H., Lee A.W.M., Chan W.H., Zhu X.M., Leung K.C.F. (2014). A coumarin-based fluorescent probe for recognition of Cu 2+ and fast detection of histidine in hard-to-transfect cells by a sensing ensemble approach. Chemical Communications, 50(47), 6207-6210. https://doi.org/10.1039/C4CC00521J DOI: https://doi.org/10.1039/C4CC00521J

Загрузки

Опубликована онлайн

2025-12-29

Как цитировать

Турдыбеков, Д., Ибраев, Н., Копбалина, К., Кишкентаева, А., Панкин, Д., & Смирнов, М. (2025). Теоретическое исследование электронных и структурных свойств N-(2-OXO-2H-CHROMEN-3-CARBONYL) цитизина. Eurasian Physical Technical Journal, 22(4 (54), 39–45. https://doi.org/10.31489/2025N4/39-45

Выпуск

Раздел

Материаловедение

Похожие статьи

1 2 3 4 5 6 7 > >> 

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.

Наиболее читаемые статьи этого автора (авторов)

<< < 1 2 
Loading...