Влияние топологического дефекта на масс-спектры тяжелых и легких кварконий.

Влияние топологического дефекта на масс-спектры тяжелых и легких кварконий.

Авторы

DOI:

https://doi.org/10.31489/2022No4/78-87

Ключевые слова:

уравнение Шрёдингера, метод Никифорова-Уварова, потенциал Хультена-Юкавы, масс-спектры, топологический дефект

Аннотация

В настоящем исследовании влияние топологического дефекта на масс-спектры тяжелых и тяжелых-легких мезонов, таких как чармоний, боттомоний и шарм-стрэндж, боттом-чарм, соответственно, изучается с помощью потенциала Хюльтена плюс Юкавы. Уравнение Шрёдингера решается аналитически методом Никифорова-Уварова. Получены приближенные решения энергетического спектра и ненормированной волновой функции. Полученные результаты применены для предсказания масс-спектров тяжелых и тяжело-легких мезонов при наличии и отсутствии топологического дефекта для различных квантовых состояний. Установлено, что при увеличении топологического дефекта масс-спектры смещаются и ихзначения приближаются к экспериментальным данным. Однако, по сравнению с работой других исследователей, результаты показали улучшенное решение для описания масс-спектров.

Библиографические ссылки

"1 Augustin J.E., Boyarski A.M., Breidenbach M. Discovery of a narrow resonance in e+e- annihilation. Physical Review Letter, 1974, Vol. 33, pp. 1408. DOI: https://doi.org/10.1103/PhysRevLett.33.1406

Aubert J.J., Becker U., Biggs P.J. Experimental observation of a heavy particle. Physical Review Letters, 1974, Vol. 33, pp. 1406. DOI: https://doi.org/10.1103/PhysRevLett.33.1404

Allosh M., Mustafa Y., Ahmed N.K., Mustafa A.S. Ground and Excited state mass spectra and properties of heavy-light mesons, Few-Body Systems,2021, Vol. 62, pp 234. DOI: https://doi.org/10.1007/s00601-021-01608-1

Omugbe E., Osafile O.E., Okon I.B., Inyang E.P., William E.S., Jahanshir A. Any L-state energy of the spinless Salpeter equation under the Cornell potential by the WKB Approximation method: An Application to mass spectra of mesons. Few-Body Systems 2022,Vol. 63, pp 7. DOI: https://doi.org/10.1007/s00601-021-01705-1

Bhaghyesh A. Charmonium properties using the Discrete variable representation (DVR) method. Advances in High Energy Physics, 2021, pp.7. doi:10.1155/2021/9991152 DOI: https://doi.org/10.1155/2021/9991152

Inyang E.P., William E.S., Obu J.O., Ita B. I., Inyang E.P., Akpan I.O. Energy spectra and expectation values of selected diatomic molecules through the solutions of Klein-Gordon equation with Eckart-Hellmann potential model. Molecular Physics, 2021, Vol.119, e1956615. doi: 10.1080/00268976.2021.1956615 DOI: https://doi.org/10.1080/00268976.2021.1956615

Omugbe E., Osafile O.E., Okon I. B., et al. Non - relativistic bound state solutions with -deformed Kratzer-type potential using the super-symmetric WKB method: application to theoretic-information measures. European Physical Journal D, 2022, Vol.76, pp.11. DOI: https://doi.org/10.1140/epjd/s10053-022-00395-6

Akpan I.O., Inyang E.P., Inyang E.P., William E.S. Approximate solutions of the Schrödinger equation with Hulthen-Hellmann Potentials for a Quarkonium system. Revista Mexica De Fisica, 2021. Vol.67, pp. 490. DOI: https://doi.org/10.31349/RevMexFis.67.482

Mutuk H. Mass Spectra and Decay constants of Heavy-light Mesons: A case study of QCD sum Rules and Quark model. Advances in High Energy Physics, 2018, Vol.20, pp.653. DOI: https://doi.org/10.1155/2018/8095653

Edet C.O., Mahmoud S., Inyang E.P., Ali N., Aljunid A., Endut R., IkotA.N., Asjad M.. Non-Relativistic Treatment of the 2D Electron System Interacting via Varshni-Shukla Potential Using the Asymptoptic Iteration Method. Mathematics, 2022, Vol.10, pp.2824. doi: 10.3390/math10152824 DOI: https://doi.org/10.3390/math10152824

Nikiforov S.K., Uvarov V.B. Special functions of Mathematical Physics, Birkhauser, Basel, 1988. http://dx.doi.org/10.1007/978-1-4757-1595-8 DOI: https://doi.org/10.1007/978-1-4757-1595-8

William E. S., Inyang E. P., Thompson E. A. Arbitrary -solutions of the Schrödinger equation interacting with Hulthén-Hellmann potential model. Revista Mexicana Fisica, 2020, Vol. 66, pp. 730. doi: 10.31349/RevMexFis.66.730 DOI: https://doi.org/10.31349/RevMexFis.66.730

Ikot A.N., Okorie U.S., Amadi P.O., Edet C.O., Rampho G.J., Sever R. The Nikiforov-Uvarov –Functional Analysis (NUFA) Method: A new approach for solving exponential – Type potentials. Few-Body System, 2021, Vol.62, pp. 9. doi: 10.1007/s00601-021-021-01593-5 DOI: https://doi.org/10.1007/s00601-021-01593-5

Inyang E.P., Iwuji P.C., Ntibi J.E., Omugbe E., Ibanga E.A., William E.S. Quark-antiquark study with inversely quadratic Yukawa potential using Nikiforov-Uvarov-Functional analysis method. East European Journal of Physics, 2022, Vol. 2, pp.51. doi: 10.26565/2312-4334-2022-2-05 DOI: https://doi.org/10.26565/2312-4334-2022-2-05

Inyang E.P., Iwuji P.C., Ntibi J.E., William E.S., Ibanga E.A. Solutions of the Schrodinger equation with Hulthen –screened Kratzer potential: Application to diatomic molecules. East European Journal of Physics, 2022, Vol.1, pp.11. doi: 10.26565/2312-4334-2022-2-02 DOI: https://doi.org/10.26565/2312-4334-2022-2-02

Omugbe E., Osafile O.E., Inyang E.P., Jahanshir A. Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods. Physica Scripta, 2021, Vol. 96, pp. 125408. DOI: https://doi.org/10.1088/1402-4896/ac38d4

Dong S.H., Cruz-Irisson M.Energy spectrum for a modified Rosen-Morse potential solved by proper quantization rule and its thermodynamic properties. Journal of Mathematical Chemistry, 2012, Vol.50, pp. 892. DOI: https://doi.org/10.1007/s10910-011-9931-3

Abu-shady M., Edet C.O., Ikot A.N. Non-relativistic Quark model under external magnetic and Aharanov-Bohm (AB) fields in the presence of Temperature-Dependent confined Cornell potential. Canadian Journal of Physics, 2021. doi: 10.11139/cjp-2020-0101 DOI: https://doi.org/10.1139/cjp-2020-0101

Prasanth J.P., Sebastian K., Bannur V.M. Revisiting Cornell potential model of the Quark-Gluon plasma. Physica A, 2020, Vol.558, pp.124921. DOI: https://doi.org/10.1016/j.physa.2020.124921

Vega A., Flores J. Heavy quarkonium properties from Cornell potential using variational method and supersymmetric quantum mechanics. Pramana Journal of Physics, 2016, Vol.87, pp.46. DOI: https://doi.org/10.1007/s12043-016-1278-7

Kumar R., Singh R.M., Bhahardivaj S.B., Rani R., Chand F. Analytical solutions to the Schrodinger equation for generalized Cornell potential and its application to diatomic molecules and heavy mesons. Modern Physics Letter A., 2022, Vol. 37, pp.2250010. DOI: https://doi.org/10.1142/S0217732322500109

Hassanabadi H., Ghafourian M., Rahmani S. Study of the Heavy-Light mesons properties via the Variational method for Cornell interaction. Few-Body System, 2016, Vol.15, pp. 6. DOI: https://doi.org/10.1007/s00601-015-1040-6

Inyang E.P., Inyang E.P., Ntibi J.E., William E.S. Analytical solutions of Schrodinger equation with Kratzer-screened Coulomb potential for a Quarkonium system. Bulletin of Pure and Applied Sciences, 2021, Vol.40, pp.24. doi:10.5958/2320-3218.2021.0002.6 DOI: https://doi.org/10.5958/2320-3218.2021.00002.6

Inyang E.P., Inyang E.P., William E., et al. Study on the applicability of Varshni potential to predict the mass-spectra of the Quark-Antiquark systems in a non-relativistic framework. Jordan Journal of Physics, 2021, Vol.14, pp.345. DOI: https://doi.org/10.47011/14.4.8

Inyang E.P., Inyang E.P., Akpan I.O., Ntibi J.E., William E.S. Masses and thermodynamic properties of a Quarkonium system. Canadian Journal Physics, 2021, Vol. 99, pp.990. doi: 10.1139/cjp-2020-0578 DOI: https://doi.org/10.1139/cjp-2020-0578

Purohit K. R., Jakhad P. Rai A.K., Quarkonium spectroscopy of the linear plus modified Yukawa potential. Physica Scripta, 2022, Vol. 97, pp. 044002. DOI: https://doi.org/10.1088/1402-4896/ac5bc2

Hulthen L. Über die eigenlosunger der Schro¨dinger-Gleichung des deuterons, Ark. Mat. Astronomy Physics A., 1942, Vol. 28, pp.5.

Yukawa H. On the interaction of elementary particles. Proc. Phys. Math. Soc,. Japan. 1935, Vol. 17, pp. 48.

Li X., Chang C. Nonlinear optical properties of GaAs/AlnGa1-n as quantum dots system with Hulthen-Yukawa potential. Optical materials, 2022, Vol.131, pp.112605. DOI: https://doi.org/10.1016/j.optmat.2022.112605

Edet C.O., Ikot A.N. Effect of Topological Defect on the Energy spectra and Thermo-magnetic properties of CO diatomic molecule. Journal Low Temperature Physics, 2021, Vol. 203, pp.111. DOI: https://doi.org/10.1007/s10909-021-02577-9

Furtado C., Morades F. Landau levels in the presence of a screw dislocation. Europhysics Letter, 1999, Vol.45, pp.282. DOI: https://doi.org/10.1209/epl/i1999-00159-8

Furtado C., F.Morades. On the binding of electrons and holes to disclinations. Physics Letter A., 1994, Vol.188, pp.396. DOI: https://doi.org/10.1016/0375-9601(94)90482-0

Hassanabadi H., Hosseinpour M. Thermodynamic properties of neutral particle in the presence of topological defects in magnetic cosmic string background. European Physical Journal C., 2016, Vol.76, pp.553. DOI: https://doi.org/10.1140/epjc/s10052-016-4392-2

Nwabuzor P., Edet C., Ikot A.N., Okorie U., Ramantswana M., Horchani R., Abdel-Aty A., Rampho G. Analyzing the effects of Topological Defect (TD) on the Energy spectra and Thermal Properties of LiH, TiC and I2 diatomic molecules. Entropy, 2021, Vol.23(8), pp.1060. doi: 10.3390/e23081060 DOI: https://doi.org/10.3390/e23081060

Ahmed F. Approximate eigenvalue solutions with diatomic molecular potential under topological defects and Aharonov-Bohm flux field: application for some known potentials. Molecular Physics, 2022, 2124935. DOI: https://doi.org/10.1080/00268976.2022.2124935

Jacobs S., Olsson M.G., Suchyta C. Comparing the Schrodinger and Spinless Salpeter equations for heavy-quark bound states. Physical Review D., 1986, Vol. 33, pp. 3338. DOI: https://doi.org/10.1103/PhysRevD.33.3338

Ciftci H., Kisoglu H.F. Nonrelativistic-Arbitrary l-states of quarkonium through Asymptotic Iteration method. Advances in High Energy Physics, 2018, 4549705. DOI: https://doi.org/10.1155/2018/4549705

Olive R., Groom D. E., Trippe T.G. Particle Data Group, Chinese Physics C., 2014, Vol.38, pp. 60. DOI: https://doi.org/10.1088/1674-1137/38/9/090001

Tanabashi M., Carone, C. D., Trippe T.G., Wohl C.G. Particle Data Group, Physical Review D., 2018, Vol.98, pp.546.

Patrignani C. et al., Particle data group, Chinese Physics C., 2016, Vol.40, 100001. DOI: https://doi.org/10.1088/1674-1137/40/10/100001

Abu-Shady M., Ezz-Alarab S.Y. Trigonometric Rosen–Morse Potential as a Quark–Antiquark Interaction Potential for Meson Properties in the Non-relativistic Quark Model Using EAIM. Few-Body Systems, 2019, Vol. 60, pp 66. DOI: https://doi.org/10.1007/s00601-019-1531-y

Rani R., Bhardwaj S. B., Chand F., Mass Spectra of Heavy and Light Mesons Using Asymptotic Iteration Method, Communication in Theoretical Physics, 2018, Vol.70, pp.179. DOI: https://doi.org/10.1088/0253-6102/70/2/179

Kumar A., Vinodkumar P. C. Properties of B c meson. Pramana Journal of Physics, 2006, Vol.66, pp.958. DOI: https://doi.org/10.1007/BF02704795

Eichten E.J., Quigg C. Mesons with beauty and charm: Spectroscopy. Physical Review D. ,1994, Vol. 49, pp.5845." DOI: https://doi.org/10.1103/PhysRevD.49.5845

Загрузки

Опубликована онлайн

2022-12-01

Как цитировать

Inyang, E., Obisung, E., Amajama, J., Bassey, D., William, E., & Okon, I. (2022). Влияние топологического дефекта на масс-спектры тяжелых и легких кварконий. Eurasian Physical Technical Journal, 19(4(42), 78–87. https://doi.org/10.31489/2022No4/78-87

Выпуск

Раздел

Физика и астрономия

Похожие статьи

<< < 3 4 5 6 7 8 9 10 11 > >> 

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.

Loading...