CONFORMATIONAL STRUCTURE OF BINARY POLYPEPTIDE COMPLEXES ON THE SURFACE OF A CHARGED GOLD NANOPARTICLE WITH CHANGING PH

CONFORMATIONAL STRUCTURE OF BINARY POLYPEPTIDE COMPLEXES ON THE SURFACE OF A CHARGED GOLD NANOPARTICLE WITH CHANGING PH

Authors

DOI:

https://doi.org/10.31489/2025N4/5-23

Keywords:

polypeptide complex, molecular dynamics simulation, conformational transformations, charged nanoobject

Abstract

Using molecular dynamics simulation, pH-sensitive conformations of binary complexes of homogeneous polypeptides located on the surface of a charged spherical gold nanoparticle were studied. A mathematical model of conformations has been developed taking into account interactions in a complex of two homogeneous polymers on the surface of a charged spherical nanoobject. When two polypeptides were adsorbed on a nanoparticle, the structure of the macromolecular corona depended significantly on the polypeptide combinations in the binary complex. Two identical homogeneous polypeptides shifted away from each other along the neutral surface when their pH deviated from the isoelectric point, while on the surface of a similarly charged nanoparticle, the macrochain corona became strongly loosened. On the charged nanoparticle, the polymer shell of the two polypeptides of opposite polarities delaminated, and the shell itself swelled significantly. When one of the polypeptides in this binary complex reached the isoelectric point, the second charged polypeptide unfolded and disengaged from the first macrochain, shifting away from the surface of the similarly charged nanoparticle.

References

Kanp T., Dhuri A.M., Rode K., Aalhate M., Paul P., Nair R., Singh P.K. (2025) Exploring the potential of nanocarriers for cancer immunotherapy: insights into mechanism, nanocarriers, and regulatory perspectives. ACS Appl. Bio Mater., 8, 108–138. https://doi.org/10.1021/acsabm.4c01797 DOI: https://doi.org/10.1021/acsabm.4c01797

Mi S., Hu X., Yuan S., Yu H., Guo Y., Cheng Y., Yao W. (2024) Unveiling the correlation between protein, protein corona, and target signal loss in SERS detection. Anal. Chem., 96, 19768–19777. https://doi.org/10.1021/acs.analchem.4c05084 DOI: https://doi.org/10.1021/acs.analchem.4c05084

Gao J., Yang W., Liu R., Feng, J., Li Y., Jiang M., Jiang, S. (2024) A reliable gold nanoparticle/Cu-TCPP 2D MOF/gold/D-shaped fiber sensor based on SPR and LSPR coupling for dopamine detection. Applied Surface Science, 655, 159523. https://doi.org/10.1016/j.apsusc.2024.159523 DOI: https://doi.org/10.1016/j.apsusc.2024.159523

Liu M., Zhuang H., Zhang Y., Jia Y. (2024) A sandwich FRET biosensor for lysozyme detection based on peptide-functionalized gold nanoparticles and FAM-labeled aptamer. Talanta, 276, 126226. https://doi.org/10.1016/j.talanta.2024.126226 DOI: https://doi.org/10.1016/j.talanta.2024.126226

Kumar S., Dory Y.L., Lepage M., Zhao Y. (2011) Surface-grafted stimuli-responsive block copolymer brushes for the thermo-, photo- and pH-sensitive release of dye molecules. Macromolecules, 44, 7385–7393. https://doi.org/10.1021/ma2010102 DOI: https://doi.org/10.1021/ma2010102

Cui J., Nguyen T., Ceolín M., Berger R., Azzaroni O., del Campo A. (2012) Phototunable response in caged polymer brushes. Macromolecules, 45, 3213–3220. https://doi.org/10.1021/ma300274b DOI: https://doi.org/10.1021/ma300274b

Jacquelín D.K., Perez M.A., ́Euti E.M., Arisnabarreta N., Cometto F.P., Paredes-Olivera, P., Patrito E.M. (2016) A pH-Sensitive supramolecular switch based on mixed carboxylic acid terminated self-assembled monolayers on Au(111). Langmuir, 32, 947–953. https://doi.org/10.1021/acs.langmuir.5b03807 DOI: https://doi.org/10.1021/acs.langmuir.5b03807

Filip J., Popelka A., Bertok T., Holazova A., Osicka J., Kollar J., Ilcikova M., Tkac J., Kasak P. (2017) pH-Switchable Interaction of a carboxybetaine ester-based SAM with DNA and gold nanoparticles. Langmuir, 33, 6657–6666. https://doi.org/10.1021/acs.langmuir.7b00568 DOI: https://doi.org/10.1021/acs.langmuir.7b00568

Debayle M., Marchandier T., Xu X., Lequeux N., Pons T. (2019) pH-Sensitive visible or shortwave infrared quantum dot nanoprobes using conformation-switchable copolymeric ligands. ACS Appl. Mater. Interfaces, 11, 25008–25016. https://doi.org/10.1021/acsami.9b06194 DOI: https://doi.org/10.1021/acsami.9b06194

Shirmanova M.V., Druzhkova I.N., Lukina M.M., Matlashov M.E., Belousov, V.V., Snopova L.B., Prodanetz N.N., Dudenkova V.V., Lukyanov S.A., Zagaynova E.V. (2015) Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2. Biochimica et Biophysica Acta (BBA) - General Subjects, 1850, 1905-1911. https://doi.org/10.1016/j.bbagen.2015.05.001 DOI: https://doi.org/10.1016/j.bbagen.2015.05.001

Webb B., Chimenti M., Jacobson M.P., Barber D.L. (2011) Dysregulated pH: a perfect storm for cancer progression. Nature Reviews Cancer, 11, 671–677. https://doi.org/10.1038/nrc3110 DOI: https://doi.org/10.1038/nrc3110

Liu X., Chen Y., Li H., Huang N., Jin Q., Ren K., Ji J. (2013) Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior. ACS Nano 7, 6244–6257. https://doi.org/10.1021/nn402201w DOI: https://doi.org/10.1021/nn402201w

Chen W., Lei Q., Luo G., Jia H., Hong S., Liu Y., Cheng Y., Zhang X. (2015) Rational Design of Multifunctional Gold Nanoparticles via Host−Guest Interaction for Cancer-Targeted Therapy. ACS Appl. Mater. Interfaces, 7, 17171–17180. https://doi.org/10.1021/acsami.5b04031 DOI: https://doi.org/10.1021/acsami.5b04031

Yari-Ilkhchi A., Rafi A.A., Mahkam M. (2025) Design and development of pH-sensitive nanocarriers using molecularly imprinted polymers for the targeted delivery of sodium thiopental. Nanoscale Advances, 7, 2039-2046. https://doi.org/10.1039/d4na00926f DOI: https://doi.org/10.1039/D4NA00926F

Kruchinin N.Yu., Kucherenko M.G. (2021) Rearrangements in the conformational structure of polyampholytic polypeptides on the surface of a uniformly charged and polarized nanowire: Molecular dynamics simulation. Surfaces and Interfaces, 27, 101517, https://doi.org/10.1016/j.surfin.2021.101517 DOI: https://doi.org/10.1016/j.surfin.2021.101517

Kruchinin N.Yu., Kucherenko M.G. (2022) Molecular dynamics simulation of the conformational structure of uniform polypeptides on the surface of a polarized metal prolate nanospheroid with varying pH. Russian Journal of Physical Chemistry A, 96, 624–632. https://doi.org/10.1134/S0036024422030141 DOI: https://doi.org/10.1134/S0036024422030141

Kruchinin N.Yu., Kucherenko M.G. (2022) Conformational Changes in Polyampholyte Macrochains on the Surface of an Oblate Metallic Nanospheroid in Alternating Electric Field. High Energy Chemistry, 56, 499-510. https://doi.org/10.1134/S0018143922060108 DOI: https://doi.org/10.1134/S0018143922060108

Kruchinin N.Yu. (2023) Rearrangement of the conformations of polyampholitic macromolecules on the surface of a charged spherical metal nanoparticle in an alternating electric field: molecular dynamic simulation. Russian Journal of Physical Chemistry A, 97, 2777–2785. https://doi.org/10.1134/S003602442312018X DOI: https://doi.org/10.1134/S003602442312018X

Kruchinin N.Yu., Kucherenko M.G. (2024) Conformational structure of a complex of two oppositely charged polyelectrolytes on the surface of a charged spherical metal nanoparticle. High Energy Chemistry, 58, 615–623. https://doi.org/10.1134/S0018143924700590 DOI: https://doi.org/10.1134/S0018143924700590

Kucherenko M.G., Kruchinin N.Yu., Neyasov P.P. (2024) Conformational structure of polyampholytes and polyelectrolytes on the surface of a longitudinally polarized gold spherocylinder. Eurasian Physical Technical Journal 21 (3), 6-20. https://doi.org/10.31489/2024No3/6-20 DOI: https://doi.org/10.31489/2024No3/6-20

Kruchinin N.Yu., Kucherenko M.G. (2025) Conformational changes of two oppositely charged poly-electrolytes, including those combined into a single block copolymer, on the surface of a charged or transversely polarized cylindrical metal nanowire. Journal of Polymer Research, 32,79. https://doi.org/10.1007/s10965-025-04305-3 DOI: https://doi.org/10.1007/s10965-025-04305-3

Grosberg A.Y., Khokhlov A.R. (1994) Statistical Physics of Macromolecules. AIP Press, New York. 347.

Edvards S.F. (1965) The statistical mechanics of polymers with excluded volume. Proc. Phys. Soc., 85, 613-624. https://doi.org/10.1088/0370-1328/85/4/301 DOI: https://doi.org/10.1088/0370-1328/85/4/301

Kucherenko M.G., Rusinov A.P., Chmereva T.M., Ignat’ev A.A., Kislov D.A., Kruchinin N.Yu. (2009) Kinetics of photoreactions in a regular porous nanostructure with cylindrical cells filled with activator-containing macromolecules. Optics and Spectroscopy ,107, 480–485. https://doi.org/10.1134/S0030400X0909029X DOI: https://doi.org/10.1134/S0030400X0909029X

Mhashal A.R., Roy S. (2014) Effect of Gold Nanoparticle on Structure and Fluidity of Lipid Membrane. PLoS One 9, e114152. https://doi.org/10.1371/journal.pone.0114152 DOI: https://doi.org/10.1371/journal.pone.0114152

Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R.D., Kale L., Schulten K. (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem., 26, 1781-1802. https://doi.org/10.1002/jcc.20289 DOI: https://doi.org/10.1002/jcc.20289

Batys P., Morga M., Bonarek P., Sammalkorpi M. (2020) pH-Induced Changes in Polypeptide Conformation: Force-Field Comparison with Experimental Validation. J. Phys. Chem. B, 124, 2961-2972. https://doi.org/10.1021/acs.jpcb.0c01475 DOI: https://doi.org/10.1021/acs.jpcb.0c01475

MacKerell Jr. A.D., Bashford D., Bellott, M., Dunbrack Jr. R.L., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., Kuczera K., Lau F.T.K., Mattos C., Michnick S., Ngo T., Nguyen D.T., Prodhom B., Reiher III W.E., Roux B., Schlenkrich M., Smith J.C., Stote R., Straub J., Watanabe M., Wiorkiewicz-Kuczera J., Yin D., Karplus M. (1998) All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B, 102, 3586-3616. https://doi.org/10.1021/jp973084f DOI: https://doi.org/10.1021/jp973084f

Huang J., Rauscher S., Nawrocki G., Ran T, Feig M., de Groot B.L., Grubmüller H., MacKerell Jr. A.D. (2016) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods, 14, 71-73. https://doi.org/10.1038/nmeth.4067 DOI: https://doi.org/10.1038/nmeth.4067

Heinz H., Vaia R.A., Farmer B.L., Naik R.R. (2008) Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12−6 and 9−6 Lennard-Jones potentials. J. Phys. Chem. C, 112, 17281-17290. https://doi.org/10.1021/jp801931d DOI: https://doi.org/10.1021/jp801931d

Darden T., York D., Pedersen L. (1993) Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089-10092. https://doi.org/10.1063/1.464397 DOI: https://doi.org/10.1063/1.464397

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 79, 926-935. https://doi.org/10.1063/1.445869 DOI: https://doi.org/10.1063/1.445869

Radak B.K., Chipot C., Suh D., Jo S., Jiang W., Phillips J.C., Schulten K., Roux. B. (2017) Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems. J. Chem. Theory Comput., 13, 5933-5944. https://doi.org/10.1021/acs.jctc.7b00875 DOI: https://doi.org/10.1021/acs.jctc.7b00875

Chen P., Zhang Z., Gu N., Ji M. (2018) Effect of the surface charge density of nanoparticles on their translocation across pulmonary surfactant monolayer: a molecular dynamics simulation. Molecular Simulation, 44, 85-93. https://doi.org/10.1080/08927022.2017.1342118 DOI: https://doi.org/10.1080/08927022.2017.1342118

Harvey J.D., Baker H.A., Mercer E., Budhathoki-Uprety J., Heller D.A. (2017) Control of Carbon Nanotube Solvatochromic Response to Chemotherapeutic Agents. ACS Appl. Mater. Interfaces, 9, 37947–37953. https://doi.org/10.1021/acsami.7b12015 DOI: https://doi.org/10.1021/acsami.7b12015

Downloads

Published online

2025-12-29

How to Cite

Kruchinin, N., & Kucherenko, M. (2025). CONFORMATIONAL STRUCTURE OF BINARY POLYPEPTIDE COMPLEXES ON THE SURFACE OF A CHARGED GOLD NANOPARTICLE WITH CHANGING PH. Eurasian Physical Technical Journal, 22(4 (54), 5–23. https://doi.org/10.31489/2025N4/5-23

Issue

Section

Materials science

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

Loading...