FRACTAL DIMENSION OF STAR CLUSTERS
DOI:
https://doi.org/10.31489/2024No3/108-116Keywords:
Star cluster, Fractal dimension, Box-covering, Star formation effiencyAbstract
Quantitative analysis of the structure of star clusters is crucial for understanding their formation and evolution. In this article, we explore the application of fractal dimension analysis to study the evolution of star clusters, also fractal dimension, a concept from fractal geometry, provides a quantitative measure of the complexity and self-similarity of geometric objects. By considering star clusters as complex networks, we employ the box covering method to calculate their fractal dimension. Our methodology combines the well-established Minimum Spanning Tree (MST) and Box-Covering (BC) methods and using these methods, the fractal structure of the clusters was determined. It was revealed that star clusters disintegrate at a fractal dimension of 1.3 and obey a power law. It should be noted that the obtained result was compared with the results of the McLuster.
References
Portegies Zwart S. F., McMillan S. L., Gieles M. (2010). Young massive star clusters. Annual review of astronomy and astrophysics, 48(1), 431-493. DOI:10.1146/annurev-astro-081309-130834. DOI: https://doi.org/10.1146/annurev-astro-081309-130834
Lada C.J., Lada E.A. (2003) Embedded clusters in molecular clouds. Annual Review of Astronomy and Astrophysics, 41(1), 57-115. DOI: 10.1146/annurev.astro.41.011802.094844.
Krumholz M.R., McKee C.F., Bland-Hawthorn J. (2019) Star clusters across cosmic time. Annual Review of Astronomy and Astrophysics, 57(1), 227-303. DOI: 10.1146/annurev-astro-091918-104430. DOI: https://doi.org/10.1146/annurev-astro-091918-104430
Rahner D., Pellegrini E.W., Glover S.C., Klessen R.S. (2019) WARPFIELD 2.0: feedback-regulated minimum star formation efficiencies of giant molecular clouds. Monthly Notices of the Royal Astronomical Society, 483(2), 2547-2560. DOI: 10.1093/mnras/sty3295. DOI: https://doi.org/10.1093/mnras/sty3295
McLeod A.F., Ali A.A., Chevance M., Della Bruna L., Schruba A., Stevance H.F., Zeidler P. (2021) The impact of pre-supernova feedback and its dependence on environment. Monthly Notices of the Royal Astronomical Society, 508(4), 5425-5448. DOI: 10.1093/mnras/stab2726. DOI: https://doi.org/10.1093/mnras/stab2726
Banerjee S., Kroupa P. (2013) Did the infant R136 and NGC 3603 clusters undergo residual gas expulsion? The Astrophysical Journal, 764(1), 29. DOI: 10.1088/0004-637X/764/1/29. DOI: https://doi.org/10.1088/0004-637X/764/1/29
Grasha K., Calzetti D., Adamo A., Kennicutt R.C., Elmegreen B.G., Messa M., Meidt S.E. (2019) The spatial relation between young star clusters and molecular clouds in M51 with LEGUS. Monthly Notices of the Royal Astronomical Society, 483(4), 4707-4723. DOI: 10.1093/mnras/sty3424. DOI: https://doi.org/10.1093/mnras/sty3424
Kennicutt Jr.R.C. (1989) The star formation law in galactic disks. Astrophysical Journal, Part 1, 344, 685-703. DOI: 10.1086/167834. DOI: https://doi.org/10.1086/167834
Krause M.G., Offner S.S., Charbonnel C., Gieles M., Klessen R.S., Vázquez-Semadeni E., Zinnecker H. (2020) The physics of star cluster formation and evolution. Space Science Reviews, 216, 1 - 46. DOI: 10.1007/s11214-020-00689-4. DOI: https://doi.org/10.1007/s11214-020-00689-4
Murray N. (2011) Star formation efficiencies and lifetimes of giant molecular clouds in the Milky Way. The Astrophysical Journal, 729, 2, 133. doi: 10.1088/0004-637X/729/2/133. DOI: https://doi.org/10.1088/0004-637X/729/2/133
Higuchi A.E., Kurono Y., Saito M., Kawabe R. (2009) A mapping survey of dense clumps associated with embedded clusters: evolutionary stages of cluster-forming clumps. The Astrophysical Journal, 705(1), 468. doi: 10.1088/0004-637X/705/1/468. DOI: https://doi.org/10.1088/0004-637X/705/1/468
Kruijssen J.D., Schruba A., Chevance M., Longmore S.N., Hygate A.P., Haydon D.T., van Dishoeck E.F. (2019) Fast and inefficient star formation due to short-lived molecular clouds and rapid feedback. Nature, 569(7757), 519-522. DOI: 10.1038/s41586-019-1194-3. DOI: https://doi.org/10.1038/s41586-019-1194-3
Lada C.J., Margulis M., Dearborn D. (1984) The formation and early dynamical evolution of bound stellar systems. Astrophysical Journal, 285, 141-152. DOI:10.1086/162485. DOI: https://doi.org/10.1086/162485
Baumgardt H., Kroupa P. (2007) A comprehensive set of simulations studying the influence of gas expulsion on star cluster evolution. Monthly Notices of the Royal Astronomical Society, 380(4), 1589-1598. DOI: 10.1111/j.1365-2966.2007.12209.x. DOI: https://doi.org/10.1111/j.1365-2966.2007.12209.x
Geyer M.P., Burkert A. (2001) The effect of gas loss on the formation of bound stellar clusters. Monthly Notices of the Royal Astronomical Society, 323, 4, 988 – 994. DOI: 10.1046/j.1365-8711.2001.04257.x. DOI: https://doi.org/10.1046/j.1365-8711.2001.04257.x
Shukirgaliyev B., Parmentier G., Berczik P., Just A. (2017) Impact of a star formation efficiency profile on the evolution of open clusters. Astronomy & Astrophysics, 605, A119. DOI: 10.1051/0004-6361/201730607. DOI: https://doi.org/10.1051/0004-6361/201730607
Shukirgaliyev B., Otebay A., Sobolenko M., Ishchenko M., Borodina O., Panamarev T., Just A. (2021) Bound mass of Dehnen models with a centrally peaked star formation efficiency. Astronomy & Astrophysics, 654, A53, DOI: 10.1051/0004-6361/202141299. DOI: https://doi.org/10.1051/0004-6361/202141299
Lada C.J., Lada E.A. (2003) Embedded clusters in molecular clouds. Annual Review of Astronomy and Astrophysics, 41(1), 57-115. DOI:10.1146/annurev.astro.41.011802.094844. DOI: https://doi.org/10.1146/annurev.astro.41.011802.094844
Bastian N., Covey K.R., Meyer M.R. (2010) A universal stellar initial mass function? A critical look at variations. Annual Review of Astronomy and Astrophysics, 48(1), 339-389. DOI:10.1146/annurev-astro-082708-101642. DOI: https://doi.org/10.1146/annurev-astro-082708-101642
Grasha K., Calzetti D., Adamo A., Kim H., Elmegreen B.G., Gouliermis D.A., Ubeda L. (2017) The hierarchical distribution of the young stellar clusters in six local star-forming galaxies. The Astrophysical Journal, 840(2), 113. DOI: 10.3847/1538-4357/aa6f15. DOI: https://doi.org/10.3847/1538-4357/aa6f15
Lahén N., Naab T., Johansson P. H., Elmegreen B., Hu C. Y., Walch S., Moster B.P. (2020) The GRIFFIN Project—Formation of Star Clusters with Individual Massive Stars in a Simulated Dwarf Galaxy Starburst. The Astrophysical Journal, 891(1), 2. DOI:10.3847/1538-4357/ab7190. DOI: https://doi.org/10.3847/1538-4357/ab7190
Komjáthy J., Molontay R., Simon K. (2019) Transfinite fractal dimension of trees and hierarchical scale-free graphs. Journal of Complex Networks, 7 (5), 764-791. DOI: 10.1093/comnet/cnz005. DOI: https://doi.org/10.1093/comnet/cnz005
Mandelbrot B.B. (1983) The fractal geometry of nature. 286. Revised and enlarged edition. New York. DOI:10.1119/1.13295. DOI: https://doi.org/10.1119/1.13295
Kim J.S., Goh K.I., Kahng B., Kim D. (2007) A box-covering algorithm for fractal scaling in scale-free networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 17(2). DOI: 10.1063/1.2737827. DOI: https://doi.org/10.1063/1.2737827
Wen T., Cheong K.H. (2021) The fractal dimension of complex networks: A review. Information Fusion, 73, 87-102. DOI: 10.1016/j.inffus.2021.02.001. DOI: https://doi.org/10.1016/j.inffus.2021.02.001
Barrow J.D., Bhavsar S.P., Sonoda D.H. (1985) Minimal spanning trees, filaments and galaxy clustering. Monthly Notices of the Royal Astronomical Society, 216(1), 17-35. DOI:10.1093/mnras/216.1.17. DOI: https://doi.org/10.1093/mnras/216.1.17
Bonanno G., Caldarelli G., Lillo F., Mantegna R.N. (2003) Topology of correlation-based minimal spanning trees in real and model markets. Physical Review E, 68(4), 046130. DOI: 10.1103/ PhysRevE.68.046130. DOI: https://doi.org/10.1103/PhysRevE.68.046130
Bhavsar S.P., Ling E.N. (1988) II. Large-Scale Distribution of Galaxies: Filamentary Structure and Visual Bias. Publications of the Astronomical Society of the Pacific, 100(633), 1314. DOI:10.1086/132325. DOI: https://doi.org/10.1086/132325
Libeskind N.I., Van De Weygaert R., Cautun M., Falck B., Tempel E., Abel T., Yepes G. (2018) Tracing the cosmic web. Monthly Notices of the Royal Astronomical Society, 473(1), 1195-1217. DOI:10.48550/arXiv.1705.03021 . DOI: https://doi.org/10.1093/mnras/stx1976
Allison R.J., Goodwin S.P., Parker R.J., De Grijs R., Zwart S.F.P., Kouwenhoven M.B.N. (2009) Dynamical mass segregation on a very short timescale. The Astrophysical Journal, 700(2), L99. DOI:10.1088/0004-637X/700/2/L99. DOI: https://doi.org/10.1088/0004-637X/700/2/L99
Naidoo K., Whiteway L., Massara E., Gualdi D., Lahav O., Viel M., Font-Ribera A. (2020). Beyond two-point statistics: using the minimum spanning tree as a tool for cosmology. Monthly Notices of the Royal Astronomical Society, 491(2), 1709-1726. DOI:10.1093/mnras/stz3075. DOI: https://doi.org/10.1093/mnras/stz3075
Plummer H.C. (1911) On the problem of distribution in globular star clusters. Monthly Notices of the Royal Astronomical Society, 71, 460-470. DOI: 10.1093/mnras/71.5.460. DOI: https://doi.org/10.1093/mnras/71.5.460
Zhanabaev Z., Ussipov N., Khokhlov S. (2021) Scale-invariant and wave nature of the Hubble parameter. Eurasian Physical Technical Journal, 18(2 (36)), 81-89. DOI:10.13140/RG.2.2.31792.61449/1. DOI: https://doi.org/10.31489/2021No2/81-89
Küpper A.H., Maschberger T., Kroupa P., Baumgardt H. (2011) Mass segregation and fractal substructure in young massive clusters–I. The McLuster code and method calibration. Monthly Notices of the Royal Astronomical Society, 417(3), 2300-2317. DOI: 10.1111/j.1365-2966.2011.19412.x. DOI: https://doi.org/10.1111/j.1365-2966.2011.19412.x
Downloads
Received
Revised
Accepted
Published online
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.












